
- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
Answer:
Here, length is 8 in. Width is 4in. and height is (3+3+3)=9 in. Then use the formula.
A= 2wl+2hl+2hw
= 2×4×8 + 2×9×8+2×9×4
=280 inch²
Distribute:
(12n-12)5
60n-60 = A(n)
You can't really find what n is I don't think, because you have 2 unknown variables n and A(n).
Answer:
25.5 and 37.5
Step-by-step explanation:
x+y=63
x-y = 12 then x = 12 + y sub this into the first equation
(12+y) + y = 63
12 + 2y = 63
2y = 51
y = 25.5 then x = 37.5