Considering the ideal gas law, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
<h3>Definition of ideal gas</h3>
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
<h3>Ideal gas law</h3>
An ideal gas is characterized by absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of gases:
P×V = n×R×T
<h3>Volume of gas</h3>
In this case, you know:
- P= 1.50 atm
- V= ?
- n= 500 g×= 11.36 moles, being 44 the molar mass of CO₂
- R= 0.082
- T= 25 C= 298 K (being 0 C=273 K)
Replacing in the ideal gas law:
1.50 atm×V = 11.36 moles×0.082 × 298 K
Solving:
V= (11.36 moles×0.082 × 298 K) ÷ 1.50 atm
<u><em>V= 184.899 L</em></u>
Finally, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
Learn more about the ideal gas law:
<u>brainly.com/question/4147359?referrer=searchResults</u>
Answer:
Motile bacteria have flagella, while nonmotile bacteria do not.
Explanation:
They are <span>Common Soil </span><em>Bacteria</em><span> Nematodes.
Hope this helps:)</span>
The arrangement of the elements in order of decreasing metallic character is: Rb, Zn, P, S, F, Ca, Co, Cr
<h3 /><h3>What are metals?</h3>
Metals are elements which are known by their special ability to form ions by a loss of electrons.
The increasing metallic character of metal is a measure of their ability to lose electrons.
Metallic character increases from right to left and down a group in the period table.
Metals are found to the left of the period table.
In conclusion, metals are known by their ability to lose electrons.
Learn more about metals at: brainly.com/question/25597694
#SPJ1
Answer: 6.75 moles
Explanation:
This is a simple stoichiometry proboe. that I would set up like this:
(13.5 moles CuCI2) (1 mol I2 / 2 moles CuCi2)
That means you all you have to do for this problem is divide by 2 and cancel out the unit moles CuCI2, which leaves you with 6.75 moles I2.
Hope this helps :)