Answer:
A
Explanation:
Recall that Δ<em>H</em> is the sum of the heats of formation of the products minus the heat of formation of the reactants multiplied by their respective coefficients. That is:

Therefore, from the chemical equation, we have that:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) = \left[\Delta H^\circ_f \text{ N$_2$H$_4$} + \Delta H^\circ_f \text{ H$_2$O} \right] -\left[3 \Delta H^\circ_f \text{ H$_2$}+\Delta H^\circ_f \text{ N$_2$O}\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%3D%20%5Cleft%5B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24O%7D%20%20%5Cright%5D%20%20%20-%5Cleft%5B3%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24%7D%2B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24O%7D%5Cright%5D%20%5Cend%7Baligned%7D)
Remember that the heat of formation of pure elements (e.g. H₂) are zero. Substitute in known values and solve for hydrazine:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) & = \left[ \Delta H^\circ _f \text{ N$_2$H$_4$} + (-285.8\text{ kJ/mol})\right] -\left[ 3(0) + (82.1\text{ kJ/mol})\right] \\ \\ \Delta H^\circ _f \text{ N$_2$H$_4$} & = (-317 + 285.8 + 82.1)\text{ kJ/mol} \\ \\ & = 50.9\text{ kJ/mol} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%26%20%3D%20%5Cleft%5B%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%28-285.8%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20-%5Cleft%5B%203%280%29%20%2B%20%2882.1%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20%5C%5C%20%5C%5C%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%26%20%3D%20%28-317%20%2B%20285.8%20%2B%2082.1%29%5Ctext%7B%20kJ%2Fmol%7D%20%5C%5C%20%5C%5C%20%26%20%3D%2050.9%5Ctext%7B%20kJ%2Fmol%7D%20%5Cend%7Baligned%7D)
In conclusion, our answer is A.
We can solve this problem by using Henry's law.
Henry's law states that the amount of dissolved gas is proportional to its partial pressure.

C is <span>the solubility of a gas.
</span><span>k is Henry's law constant.
</span><span>P is the partial pressure of the gas.
</span>We can calculate the constant from the first piece of information and then use Henry's law to calculate solubility in open drink.
0.12=4k
k=0.03
Now we can calculate the solubility in open drink.


Now we need to convert it to g/L. One mol of CO2 is 44.01<span>g.
</span>The final answer is:
<span>Lithium atoms have one valence electron, where as oxygen atoms have six. Lithium atoms tend to give up their single valence electrons, and oxygen tends to gain two valence electrons from other atoms, like lithium. They do this so they will have filled valence shells. hope this answers your question :)</span>
Answer : The correct option is (c) 
Explanation :
The given balanced chemical reaction is,

From the balanced chemical reaction, we conclude that
As, 3 moles of
react to give 2 mole of 
So, 1 mole of
react to give
moles of 
Thus, the conversion factor needed to convert the number of moles of
to the number of moles of
produced is 
Hence, the correct option is (c) 
Answer:
SO… The larger wire looses heat energy faster, however the smaller wire decreases temperature faster. ... Their surface area is much larger in proportion to their body mass and they lose heat through their skin when it is cold and they gain heat through their skin when it is hot much faster than an adult does.
Explanation: