4/8 just multiply each number by 4!
Okay so the circle on the line plot, if it is empty In the middle it is > or < if it is solid it is ≤ ≥. In this case it not solid so it will be > or < . The plot is at -1 1/2 and is going positive. So it would be a > -1 1/2
Answer:
10.29 u
Step-by-step explanation:
<u>Given :- </u>
- Two points (7,4) and (-2,9) is given to us.
And we need to find out the distance between the two points . So , here we can use the distance formula to find out the distance. As,
D = √{(x2-x1)² + (y2-y1)²}
D =√[ (7+2)² +(9-4)²]
D =√[ 9² +5²]
D =√[ 81 +25]
D = 10.29
<h3>Hence the distance between the two points is 10.29 units .</h3>
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Answer:
C
Step-by-step explanation:
It usually works best to use the polynomial with fewer terms as the multiplier. A row of partial products is written for each term of the multiplier, so the fewer terms will result in fewer rows of partial products.
In order to keep like terms together, it is preferable to allocate a separate column of the multiplication tableau to each power of the operands or product. This means we want to make note of the fact that the cubic multiplicand has a coefficient of 0 for its x^2 term.
The best setup is the one shown in the attachment.