You can start by subtracting different equations from each other.
3x + 2y + 3z = 1
subtract
3x + 2y + z = 7
2z = -6
divide by 2
z = -3
add the following two expressions together:
3x + 2y + z = 7
3x + 2y + 3z =1
6x + 4y + 4z = 8
subtract the following two expressions:
6x + 4y + 4z = 8
5x + 5y + 4z = 3
x - y = 5
^multiply the whole equation above by 3
3x - 3y = 15
subtract the following two expressions:
3x - 3y = 15
3x + 2y = 10
-5y = 5
divide each side by -5
y=-1
take the following expression from earlier:
x - y = 5
substitute y value into above equation
x - - 1 = 5
2 negatives make a positive
x + 1 = 5
subtract 1 from each side
x = 4
Therefore x = 4, y = -1, z = -3
I checked these with all 3 equations and they worked :)
(it's quite complicated, comment if you don't understand anything) :)
Answer:

Step-by-step explanation:
Quadratic function is given as 
Let's find a, b and c:
Substituting (0, 6):



Now that we know the value of c, let's derive 2 system of equations we would use to solve for a and b simultaneously as follows.
Substituting (2, 16), and c = 6








=> (Equation 1)
Substituting (3, 33), and c = 6








=> (Equation 2)
Subtract equation 1 from equation 2 to solve simultaneously for a and b.


Replace a with 4 in equation 2.
The quadratic function that represents the given 3 points would be as follows:



Answer:
2x^{4}
Step-by-step explanation:
You would subtract 7 and 5 and you would leave the exponent so it would be 2x^{4}
Answer:
8 over 4
Step-by-step explanation:
Numbers can be expressed, ordered and compared by a lot of
mathematical principles, properties, models and paradigms. There are different
properties of numbers to associate, group and distribute numbers. For example
commutative property of addition, 1 + 2 = 3 can be 3 = 1 + 2. Moreover, numbers
can be expressed by mathematical form, thus 100 wherein 1 is in the place order
of hundreds. And so on… other examples can be mathematical symbols or
inequality to compare numbers. For example, 1 > 2. One is less than 2.