Hi your answer would be 6 1/2 vials of pixie dust!
Answer:
Given f(-2)
= -5 -7(-2)
= -5+14
= 9
Thus f(-2) of f(x)= 5-7x is 9
Answer:
d=8.0 meters
Step-by-step explanation:
The volume of a cone is given by
V = 1/3 pi r^2 h
We are given the volume and the height
117.23 and the height 7
117.23 = 1/3 *3.14 *r^2 * 7
117.23 = 7.3266666666 *r^2
Divide each side by 7.3266666666
117.23/7.3266666666 = 7.3266666666 *r^2/7.3266666666
16.00045496 = r^2
Take the square root of each side
sqrt(16.00045496) =sqrt( r^2)
4.000 = r
We found the radius but it wants the diameter
d = 2*r
d =2*4.0
d=8.0 meters
Solve the following system using elimination:
{-2 x + 2 y + 3 z = 0 | (equation 1)
{-2 x - y + z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Subtract equation 1 from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x - 3 y - 2 z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Multiply equation 2 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Add equation 1 to equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{0 x+5 y + 6 z = 5 | (equation 3)
Swap equation 2 with equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+3 y + 2 z = 3 | (equation 3)
Subtract 3/5 × (equation 2) from equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - (8 z)/5 = 0 | (equation 3)
Multiply equation 3 by 5/8:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - z = 0 | (equation 3)
Multiply equation 3 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y+0 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 2 by 5:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 2 × (equation 2) from equation 1:
{-(2 x) + 0 y+3 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
v0 x+0 y+z = 0 | (equation 3)
Subtract 3 × (equation 3) from equation 1:
{-(2 x)+0 y+0 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 1 by -2:
{x+0 y+0 z = 1 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Collect results:
Answer: {x = 1, y = 1, z = 0
Answer:
isn't an equivalence relation. It is reflexive but neither symmetric nor transitive.
Step-by-step explanation:
Let
denote a set of elements.
would denote the set of all ordered pairs of elements of
.
For example, with
,
and
are both members of
. However,
because the pairs are ordered.
A relation
on
is a subset of
. For any two elements
,
if and only if the ordered pair
is in
.
A relation
on set
is an equivalence relation if it satisfies the following:
- Reflexivity: for any
, the relation
needs to ensure that
(that is:
.)
- Symmetry: for any
,
if and only if
. In other words, either both
and
are in
, or neither is in
.
- Transitivity: for any
, if
and
, then
. In other words, if
and
are both in
, then
also needs to be in
.
The relation
(on
) in this question is indeed reflexive.
,
, and
(one pair for each element of
) are all elements of
.
isn't symmetric.
but
(the pairs in
are all ordered.) In other words,
isn't equivalent to
under
even though
.
Neither is
transitive.
and
. However,
. In other words, under relation
,
and
does not imply
.