678 is what you have left but if you would put it as a fraction of what you have left now it would be 678/1012... which then take and put it as a decimal which is a form of a mixed number = .6699
Answer:
12m²
Step-by-step explanation:
For a rectangle, with length L and width W,
the perimeter is given as
Perimeter,
P = (2 x Length) + (2 x Width)
P = 2L + 2W
It is given that the perimeter is 48, hence
48 = 2L + 2W (divide both sides by 2)
24 = L + W
or
L = 24 - W -----> eq 1
Also realize that the Area of a Rectangle is given by
A = L x W -----> eq 2
Substituting eq 1 into eq 2,
A = (24 - W) x W
A = -W² + 24W
Recall that for a quadratic equation y = ax² + bx + c, the maxima or minima is given by y(max) = -b/2a
In this case, b = 24 and a = -1
-b/2a = -24/[ 2(-1) ] = 12
Hence for A to be maximum A(max) = 12m² (Answer)
The answer to your question is A. 359.5
A) There are a number of ways to compute the determinant of a 3x3 matrix. Since k is on the bottom row, it is convenient to compute the cofactors of the numbers on the bottom row. Then the determinant is ...
1×(2×-1 -3×1) -k×(3×-1 -2×1) +2×(3×3 -2×2) = 5 -5k
bi) Π₁ can be written using r = (x, y, z).
Π₁ ⇒ 3x +2y +z = 4
bii) The cross product of the coefficients of λ and μ will give the normal to the plane. The dot-product of that with the constant vector will give the desired constant.
Π₂ ⇒ ((1, 0, 2)×(1, -1, -1))•(x, y, z) = ((1, 0, 2)×(1, -1, -1))•(1, 2, 3)
Π₂ ⇒ 2x +3y -z = 5
c) If the three planes form a sheath, the ranks of their coefficient matrix and that of the augmented matrix must be 2. That is, the determinant must be zero. The value of k that makes the determinant zero is found in part (a) to be -1.
A common approach to determining the rank of a matrix is to reduce it to row echelon form. Then the number of independent rows becomes obvious. (It is the number of non-zero rows.) This form for k=-1 is shown in the picture.