Answer:
I attach the missing image from your question.
To easily solve this question, we must realize that the graph of the relation is very similar to that of the expression
y = √(x-a) , where a>0
If we take a look at the image attached, we have plotted the graph of
y = √(x-1) , and its correspondent inverse function.
This means that the answer is the first option
Hi there
So, if the track is 1/8 of a mile, let's call every lap a "one-eighth mile" run. We know John ran 24 laps, or that he ran 24 "one-eighth miles," just consecutive, one right after another. Let's stop worrying about rates or tricks or math for a second, and just ask: how many real miles is 24 "one-eighth" miles? We know it's less than 24---a lot less, since you have to go around 8 times just to get to 1 mile. Well wait, if we go around 8 times, we get 1 mile. That means if we go around 28, or 16 times, we get 2 miles; And let's just think to the next full mile---if we go 38, or 24 times, we get 3 miles. He did go around 24 times, so he must have run 3 miles on a 1/8 track.
Division and multiplication are inverses of each other. So we solved this by looking for an intuition for how many full miles corresponded to how many laps, with a bunch of steps of multiplication. But you can cut right to the chase and solve it faster with division---24 laps * 1 mile per 8 laps, means:
total distance = 24 Lap (1 mi / 8 Lap) total distance = 24/8 total distance = 3
Each friend gets 16/4 muffins
Each friend gets 16 ÷ 4 muffins
Each friend gets 4 of the 16 muffins
Answer:
2 + y
Step-by-step explanation:
all you must do is add y to 2