Answer:
Explanation:
We are basically needing to solve for the time in the equation d = rt, where d is the distance around Mars (aka the circumference), r is the velocity, and t is time. We need to find the circumference and the velocity. We will begin with the velocity.
Because the gravitational attraction between Phobos and Mars provides the centripetal acceleration necessary to keep Phobos in its (sort of) circular path, the equation we use for this is:
which says that Force supplied by gravity is equal to the centripetal force. Expanding that:

When we move that around mathematically to solve for the velocity value, what we end up with is:
and filling in:
and we get that
v = 2100 m/s
Now for the circumference:
C = 2πr and
C = 2(3.1415)(9.38 × 10⁶) so
C = 5.9 × 10⁷
Putting that all together in the C = vT equation:
5.9 × 10⁷ = 2100T so
T = 2.8 × 10⁴ sec or 7.8 hours
<span>P= work/time and work is = to force x distance so its 500x4 =2000joules
and 2000/4 =500 watts</span>
To solve this problem it is necessary to apply the concepts related to the condition of path difference for destructive interference between the two reflected waves from the top and bottom of a surface.
Mathematically this expression can be described under the equation

Where
n = Refractive index
t = Thickness
In terms of the wavelength the path difference of the reflected waves can be described as

Where
\lambda = Wavelenght
Equation the two equations we have that


Our values are given as
Wavelength of light



Therefore the minimum thickness of the oil for destructive interference to occur is approximately 34.0 nm
Answer:
false.
Explanation:
Since temperature and kinetic energy of molecules are proportional, the more we increase the temperature of the solvent, the faster the solute will dissolve.
This increase of kinetic energy allows the solvent molecules to more effective break apart the solvent molecules that are held together by intermolecular forces.