Answer:
Explanation:
This question pertains to resonance in air column. It is the case of closed air column in which fundamental note is formed at a length which is as follows
l = λ / 4 where l is length of tube and λ is wave length.
here l = .26 m
λ = .26 x 4 = 1.04 m
frequency of sound = 330 Hz
velocity of sound = frequency x wave length
= 330 x 1.04
= 343.2 m /s
b )
Next overtone will be produced at 3 times the length
so next length of air column = 3 x 26
= 78 cm
c )
If frequency of sound = 256 Hz
wavelength = velocity / frequency
= 343.2 / 256
= 1.34 m
= 134 cm
length of air column for resonance
= wavelength / 4
134/4
= 33.5 cm
Answer: a) close together
Explanation: The electric field lines also represent the intensity of the field, in this sense for strong electric fields it is usually draw the lines close to each other. In constrast when they are far apart the electric field is weak.
Answer:
1.24 m/s
Explanation:
Metric unit conversion:
9.25 mm = 0.00925 m
5 mm = 0.005 m
The volume rate that flow through the single pipe is

This volume rate should be constant and divided into the 4 narrower pipes, each of them would have a volume rate of

So the flow speed of each of the narrower pipe is:

Answer:
55.3 N, 223.3 N
Explanation:
First of all, we can find the angle of the inclined plane.
We have:
L = 5 m the length of the incline
h = 1.2 m is the height
We also have the relationship

where
is the angle of the incline. Solving for the angle,

Now we can find the components of the weight of the box, which is the force that the box exerts on the plank. Calling W = 230 N the weight of the box, we have:
- Component parallel to the incline:

- Component perpendicular to the incline:

1.98 kilograms
weight on the moon = (weight on Earth / acceleration of Earth's gravity) x acceleration of the moon's gravity
weight on the moon = (12 kg. / 9.81 m/s^2) x 1.63 m/s^2
weight on the moon = 1.98 kg.
#BrainlyOnlineEducation
#CarryOnLearning