Answer:
B) 0.59 M NaCl.
Explanation:
- It is known that the no. of millimoles of NaCl before dilution = the no. of millimoles of NaCl after dilution.
∵ (MV) before dilution = (MV) after dilution.
<em>∴ M after dilution = (MV) before dilution / V after dilution </em>= (3.2 M)(25.0 mL)/(135.0 mL) = <em>0.5926 M ≅ 0.59 M.</em>
Answer:
If your lab has litmus paper, you can use it to determine your solution's pH. When you place a drop of a solution on the litmus paper, the paper changes color based on the pH of the solution. Once the color changes, you can compare it to the color chart on the paper's package to find the pH.
Explanation:
A solution's pH will be a number between 0 and 14. A solution with a pH of 7 is classified as neutral. If the pH is lower than 7, the solution is acidic. When pH is higher than 7, the solution is basic. These numbers describe the concentration of hydrogen ions in the solution and increase on a negative logarithmic scale.
For example, If Solution A has a pH of 3 and Solution B has a pH of 1, then Solution B has 100 times as many hydrogen ions than A and is therefore 100 times more acidic.
Answer:
One mole of any gas has a volume of 24 dm3 or 24,000 cm3 at rtp (room temperature and pressure).
Explanation:
Answer: option B.
carbon + oxygen → carbon dioxide
Explanation:
Answer:
<u><em>Structure:</em></u>
<em>Differences- </em>A polymer is a collection of a large number of molecules whereas a monomer is a single molecule.
A monomer is a single molecule, which has the ability to chemically bond with other monomers in a long chain. A polymer is a chain that is made when monomers bind with other monomers.
<em>Similarities-</em> They are both molecules
<u><em>Properties:</em></u>
<em> Differences- </em>Monomers have polyfunctionality, which is the capacity to form chemical bonds to at least two other monomer molecules. Polymers are chemically unreactive, solids at room temperature, malleable, tough, and are electrical insulators.
<em>Similarities- </em>They both makeup larger forms of matter.
<u><em>Intermolecular Forces</em></u>
<em>Differences: </em>Polymers are held together by covalent bonds, hydrogen bonds, and dispersion bonds. Monomers are <u><em>only</em></u> held together by hydrogen bonds.
<em>Similarities: </em>They can both be bonded together by hydrogen bonds.