<span>Coca-cola is similar to tomato juice because both are acidic drinks. Coca-cola is acidic because it is a carbonated drink. This means there is a presence of an acid in coke namely: carbonic acid and phosphoric acid. Tomato juice is also acidic because of the presence of vitamin c (ascorbic acid), but slightly less acidic than coke.</span>
Answer:
1.a
2. b
Explanation:
Distillation is a process whereby a mixture of liquids having different vapor pressures is separated into its components. At first one might think that this would be quite simple: if you have a solution consisting of liquid A that boils at 50°C and liquid B with a boiling point of 90°C, all that would be necessary would be to heat the mixture to some temperature between these two values; this would boil off all the A (whose vapor could then be condensed back into pure liquid A), leaving pure liquid B in the pot. But that overlooks that fact that these liquids will have substantial vapor pressures at all temperatures, not only at their boiling points.
source: https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chem1_(Lower)/08%3A_Solutions/8.09%3A_Distillation
Use dimensional analysis.


Now you try converting moles to grams. All you have to do is start with MOLES (Unlike the previous examples) over 1 then multiply that ratio by the ratio of molar mass over 1 mole. Hope this helps!
It is a true fact that ionic crystals are excellent insulators and can hold a large amount of heat before melting or boiling. The correct option among the two options that are given in the question is the first option. Salt is a great example of ionic crystals and we know that it takes a huge amount of time to melt or boil.
The answer for the problem is explained below.
The option for the answer is "D".
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
Explanation:
Given:
wavelength (λ) = 468 nm = 468×10^-9 m
speed of light (c) = 3.00 x 10^8m/s
Planck's constant is 6.626 x 10^-34J·s
To solve:
energy of light (E)
We know,
E =(h×c) ÷ λ
E = ( 6.626 x 10^-34 × 3.00 x 10^8) ÷ 468×10^-9
E = 4.25 × 10^-19 J
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>