Answer:
![5x+8=23](https://tex.z-dn.net/?f=5x%2B8%3D23)
Step-by-step explanation:
we have
![5x-8=7](https://tex.z-dn.net/?f=5x-8%3D7)
Adds 16 both sides
![5x-8+16=7+16](https://tex.z-dn.net/?f=5x-8%2B16%3D7%2B16)
![5x+8=23](https://tex.z-dn.net/?f=5x%2B8%3D23)
Answer:
<em>4x^3(x^2 - 5)</em>
Step-by-step explanation:
First, try to factor a common factor.
GCF of 4 and -20 is 4.
GCF of x^5 and x^3 is x^3.
Factor out 4x^3.
4x^5 - 20x^3 =
= 4x^3(x^2 - 5)
Answer:
59/20 cups
Step-by-step explanation:
5 3/10
8 1/4
Common denimainator is 40
5 3/10 = 5 12/40
8 1/4 = 8 10/40
Now we can subtract:
330/40-212/40=118/40
118/40= 59/20 cups
Sorry if I spelled some words wrong
Noelle goes east at N mph.
Karina travels west at N + 9
then their velocity between them is (N + N + 9)
After 8 hours they travel 8(2N + 9) = 232
(2N + 9) = 29
2N = 20
N = 10 mph for Noelle
N+9=19 mph for Karina
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7