Answer:
-3x-8=16
-3x = 16+8
-3x = 24
x = 24/-3
x = -8
= -2(x-7)
= -2(-8-7)
= 30
Hope this helps you. Do mark me as brainliest.
Answer:
tried.. sry if it is wrong...
Step-by-step explanation:
some examples for u..
Mark me the Brainliest..PLS
Answer:
Problem 2): 
which agrees with answer C listed.
Problem 3) : D = (-3, 6] and R = [-5, 7]
which agrees with answer D listed
Step-by-step explanation:
Problem 2)
The Domain is the set of real numbers in which the function (given by a graph in this case) is defined. We see from the graph that the line is defined for all x values between 0 and 240. Such set, expressed in "set builder notation" is:

Problem 3)
notice that the function contains information on the end points to specify which end-point should be included and which one should not. The one on the left (for x = -3 is an open dot, indicating that it should not be included in the function's definition, therefor the Domain starts at values of x strictly larger than -3. So we use the "parenthesis" delimiter in the interval notation for this end-point. On the other hand, the end point on the right is a solid dot, indicating that it should be included in the function's definition, then we use the "square bracket notation for that end-point when writing the Domain set in interval notation:
Domain = (-3, 6]
For the Range (the set of all those y-values connected to points in the Domain) we use the interval notation form:
Range = [-5, 7]
since there minimum y-value observed for the function is at -5 , and the maximum is at 7, with a continuum in between.
Answer: $9 per hour at his job as a cashier and $8 per hour at his job delivering newspapers.
Step-by-step explanation:
1. Let's call the amount he got paid per hour at his job as a cashier:
.
Let's call the amount he got paid per hour at his job delivering newspapers:
.
2. Keeping on mind the information given in the problem above, you can make the following system of equations:

3. You can solve it by applying the Substitution method, as following:
- Solve for one of the variables from one of the equations and substitute it into the other equation to solve for the other variable and calculate its value.
- Substitute the value obtained into one of the original equations to solve for the other variable and calculate its value.
4. Therefore, you have:

Then:

Finally:

Therefore he got paid $9 per hour at his job as a cashier and $8 per hour at his job delivering newspapers.