Answer:
Volume of Burj Khalifa Prism = 4000 ![cm^2](https://tex.z-dn.net/?f=cm%5E2)
Volume of CN Tower Prism = 2671 ![cm^2](https://tex.z-dn.net/?f=cm%5E2)
Step-by-step explanation:
Given
Height of Burj Khalifa = 828 m
Height of CN Tower in Toronto = 553 m
Base of rectangular prism is a square with sides <em>10 cm </em>
<em> 10 cm</em>.
Height of Burj Khalifa prism = 40 cm
828 m is represented as 40 cm
is represented as ![\frac{40}{828 } \times 553 = 26.71\ cm](https://tex.z-dn.net/?f=%5Cfrac%7B40%7D%7B828%20%7D%20%5Ctimes%20553%20%3D%2026.71%5C%20cm)
So, height of rectangular prism of CN Tower = 26.71 cm
Volume of a Prism is given by the Formula:
![V=Area\ of\ Base \times Height](https://tex.z-dn.net/?f=V%3DArea%5C%20of%5C%20Base%20%5Ctimes%20Height)
Base is a square, so Area of base = ![Side^2](https://tex.z-dn.net/?f=Side%5E2)
Volume of Burj Khalifa Prism:
![V_B=10^2 \times 40 = 4000\ cm^2](https://tex.z-dn.net/?f=V_B%3D10%5E2%20%5Ctimes%2040%20%3D%204000%5C%20cm%5E2)
Volume of CN Tower Prism:
![V_C=10^2 \times 26.71 = 2671\ cm^2](https://tex.z-dn.net/?f=V_C%3D10%5E2%20%5Ctimes%2026.71%20%3D%202671%5C%20cm%5E2)
So, the answer is:
Volume of Burj Khalifa Prism = <em>4000</em> ![cm^2](https://tex.z-dn.net/?f=cm%5E2)
Volume of CN Tower Prism = <em>2671 </em>![cm^2](https://tex.z-dn.net/?f=cm%5E2)