Answer:
force F = 1.66 ×
N
Explanation:
given data
proton and an electron = 865 nm
solution
we get here force that is express as
force F = k q1 q2 ÷ r² ......................1
put here value and we get
force F = 9 ×
×
force F = 1.66 ×
N
The charge on the electron is 1.6x10^-19C. So, 10^24 of them will be a charge of 1.6x10^5C, F = q1xq2/[(4pi epsilon nought)r^2]
Answer:
<h2>3 m/s^2</h2>
Explanation:
Step one:
given
Mass m= 4kg
Force F= 12N
Required
Acceleration the relation between force, acceleration, and mass is Newton's first equation of motion, which says a body will continue to be at rest or uniform motion unless acted upon by an external force
F=ma
a=F/m
a=12/4
a=3 m/s^2
We use the formula,

Here, h is the variable represents the height of the flare in feet when it returns to the sea so, h = 0 and u is the initial velocity of the flare, in feet per second and its value of 192 ft/sec.
Substituting these values in above equation, we get
.
Here, t= 0 neglect because it is the time when the flare is launched.
Thus, flare return to the sea in 12 s.
Answer: 1.6Hz
foe[vqefmvkeqmvkevkefmvqelkfveklveqv