Answer:
3. 5.0N/kg
Explanation:
Gravitational field strength = gravitational force/mass of astronaut = 350N/70kg = 5.0N/kg
The formula for force exerted on/by a spring is
F = k*e where k is the spring constant and x is the distance stretched from
unstrained position. This should allow you to find what you need.
Using F = k x e,
where k is the spring constant,
and e is the extension,
The F is her weight = 45 X 0.80
= 36 N
Answer:
The increase in temperature of the bullet is 351.1 kelvin
Explanation:
First, we should find the kinetic energy of the bullet is:

with m the mass and v the velocity.

Now we know that half of the kinetic energy of the bullet is transformed into internal energy, by second's law of thermodynamics that means heat (Q) to raise bullet temperature (T), so:

To know what the increase in temperature is, we should use specific heat of lead:

The equation that relates specific heat, change in temperature and mass is:

solving for
:


Recall that work is the amount of energy transferred to an object when it experiences a displacement and is acted upon by an external force. It is given a symbol of W and is measured in joules (J).
W=\vec{F}\cdot \Delta \vec{d}
We can use this formula to determine the work done by very specific forces, generating specific types of energy. We will examine three types of energy in this activity: gravitational potential, kinetic, and thermal. Before we start deriving equations for gravitational potential energy and kinetic energy, we should note that since work is the transfer and/or transformation of energy, we can also write its symbol as \Delta E.