Answer:
Step-by-step explanation:
The equation that results from translating the parabola y=x^2y=x
2
y, equals, x, squared to the right by \greenD{h}hstart color #1fab54, h, end color #1fab54 units and up by \goldE{k}kstart color #a75a05, k, end color #a75a05 units is:
y=(x-\greenD{h})^2+\goldE{k}y=(x−h)
2
+ky, equals, left parenthesis, x, minus, start color #1fab54, h, end color #1fab54, right parenthesis, squared, plus, start color #a75a05, k, end color #a75a05
Note that negative values of \greenD{h}hstart color #1fab54, h, end color #1fab54 represent leftward shifts and negative values for \goldE{k}kstart color #a75a05, k, end color #a75a05 represent downward shifts.
Hint #22 / 3
g(x)=(x-\greenD{0})^2+\goldE{(-8)}g(x)=(x−0)
2
+(−8)g, left parenthesis, x, right parenthesis, equals, left parenthesis, x, minus, start color #1fab54, 0, end color #1fab54, right parenthesis, squared, plus, start color #a75a05, left parenthesis, minus, 8, right parenthesis, end color #a75a05
Since the function is translated up by \goldE{-8}−8start color #a75a05, minus, 8, end color #a75a05, that means it is translated down by 888 units.
Hint #33 / 3
To get the function g, shift f down by 8 units.