<span>1.Describe how the graph of y = x2 can be transformed to the graph of the given equation.
y = (x+17)2
Shift the graph of y = x2 left 17 units.
2.Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = (x-4)2-8
Shift the graph of y = x2 right 4 units and then down 8 units.
.Describe how to transform the graph of f into the graph of g.
f(x) = x2 and g(x) = -(-x)2
Reflect the graph of f across the y-axis and then reflect across the x-axis.
Question 4 (Multiple Choice Worth 2 points)
Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = x2 + 8
Shift the graph of y = x2 up 8 units.
Question 5 (Essay Worth 2 points)
Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch.
f as a function of x is equal to the square root of x and g as a function of x is equal to 8 times the square root of x
f(x) = √x, g(x) = 8√x
vertical stretch factor 8
Plz mark as brainlest</span>
Answer:
Perpendicular bisector - A line that bisects another line into two equal halves so that four right angles are created.
Cylinder - A 3D solid with circles as its bases.
Plane - A flat, 2D surface that extends infinitely.
Regular Polygon - A polygon where all angles and all sides are equal (ex. square, pentagon, triangle).
Answer:
Q1: She can write names of each Student on separate Papers and choose one Randomly, the Result may be 5:3 Girls to Boys
Q2: 75/100
Answer:
4
Step-by-step explanation:
Class width is said to be the difference between the upper class limit and the lower class limit consecutive classes of a grouped data. To calculate class width, this formula can be used:
CW = UCL - LCL
Where,
CW= Class width
UCL= Upper class limit
LCL= Lower class limit
From the table above:
For class 1, CW = 64 - 60 = 4
For class 2, CW = 69 - 65 = 4
For class 3, CW = 74 - 70 = 4
For class 4, CW = 79 - 75 = 4
For class 5, CW = 84 - 80 = 4
Therefore, the class width of the grouped data = 4
Your answer is -4<span>√6. Hope this helps :)</span>