Answer:
w = 5832.372 Joules
Explanation:
Mass of water, m = 20 kg
The water was pulled up to a height of 35 meters, i.e. h = 35 m
It takes 14 minutes to pull up the water through the height, 35 m
speed = distance/ time = 35/14 = 2.5 m/min
The bucket's height, y = speed * time = 2.5t meters
6 kg of water drips out of the bucket throughout the 14 minutes
The rate at which the water drips drips out = (6/14) = 0.4286 kg/min
Mass of water that drips out in time, t = 0.4286t kg
The mass of water remaining = (20 - 0.4286t) kg
Change in Workdone, Δw = mgΔy
Δy = 2.5 Δt
Δw = mg * 2.5 Δt
dw = (20 - 0.4286t)g2.5 dt
integrating both sides
dw = (50g - 1.07gt)dt
where b = 0, a = 14
w = 50gt - 1.07g(t²)/2 g = 9.8 m/s²
w = 490t - 5.243t²
w = (490*14 - 5.243*14²) - (490*0 - 5.243*0²)
w = 6860 - 1027.628
w = 5832.372 Joules
Alpacas were used for their meat, fibers for clothing, and art, and their images in the form of conopas.
Answer:
<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>
Explanation:
The Non conservative force is defined as a force which do not store energy or get he energy dissipate the energy from the system as the system progress with the motion.
Given are
<em> mass of the student 73 kg</em>
<em> height of water glide 11.8 m</em>
<em> work done as -5.5*10³ J</em>
Have to find speed at which the student goes down the glide.
According to<em> Law of Conservation of energy</em>,
K.E =P.E+Work Done
mv²/2=mgh +W
Rearranging the above eqn for v
v = √2(gh+W/m)
Substituting values,
V = 12.48 m/s.
<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>
Answer:
it is b and e
Explanation:
<h2>if u look at the words twice you will notice that b and e are both saying the same meanings just in diff rent words way u need to look close on things like that and u will get passing grades </h2>
When the heat source is removed from a fluid, convection currents in the fluid will eventually distribute heat uniformly throughout the fluid. When all of the fluid is at the same temperature, convection currents will stop.