The correct answer is transmission<<<<<<
Answer:
1. 2.67 s
2. 0.1 m/s²
Explanation:
1. Determination of the time taken for the penguin to fall.
Height (h) of cliff = 35 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
35 = ½ × 9.8 × t²
35 = 4.9 × t²
Divide both side by 4.9
t² = 35 / 4.9
Take the square root of both side
t = √(35 / 4.9)
t = 2.67 s
Thus, it will take 2.67 s for the penguin to fall onto the head of a napping polar bear.
2. Determination of the acceleration of the penguin.
Initial velocity (u) = 0 m/s.
Final velocity (v) = 2 m/s.
Time (t) = 20 s
Acceleration (a) =?
a = (v – u)/t
a = (2 – 0)/ 20
a = 2 / 20
a = 0.1 m/s²
Thus, the acceleration of the penguin is 0.1 m/s²
Answer:
Time, t = 0.23 seconds
Explanation:
It is given that,
Initial speed of the ranger, u = 52 km/h = 14.44 m/s
Final speed of the ranger, v = 0 (as brakes are applied)
Acceleration of the ranger, 
Distance between deer and the vehicle, d = 87 m
Let d' is the distance covered by the deer so that it comes top rest. So,


d' = 26.06 m
Distance between the point where the deer stops and the vehicle is :
D=d-d'
D=87 - 26.06 = 60.94 m
Let t is the maximum reaction time allowed if the ranger is to avoid hitting the deer. It can be calculated as :


t = 0.23 seconds
Hence, this is the required solution.
Answer:
The kinetic energy is 
Explanation:
From the question we are told that
The radius of the orbit is 
The gravitational force is 
The kinetic energy of the satellite is mathematically represented as

where v is the speed of the satellite which is mathematically represented as

=> 
substituting this into the equation

Now the gravitational force of the planet is mathematically represented as

Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
![KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B%201%7D%7B2%7D%20%2A%5B%5Cfrac%7BGMm%7D%7Br%5E2%7D%5D%20%2A%20r)
=> 
substituting values


A bell or a siren or a ring in somewhere