Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
ANSWER:
the planet that is larger than earth is Saturn
~batman wife dun dun dun...aka ~serenitybella
Answer:
You need to give the options but the formula is p=mv
Explanation:
Answer:
original mass of the block of ice is 38.34 gram
Explanation:
Given data
cup mass = 150 g
ice temperature = 0°C
water mass = 210 g
water temperature = 12°C
ice melt = 2 gram
to find out
solution
we know here
specific heat of aluminum is c = 0.900 joule/gram °C
Specific heat of water C = 4.186 joule/gram °C
so here temperature difference is dt = 12- 0 = 12°C
so here heat lost by water and cup are given by
heat lost = cup mass × c × dt + water mass × C × dt
heat lost = 150 × 0.900 × 12 + 210 × 4.186 × 12
heat lost = 12168.72 J
so
mass of ice melt here = heat lost / latent heat of fusion
here we know latent heat of fusion = 334.88 joule/gram
so
mass of ice melt = 12168.72 / 334.88
mass of ice melt is 36.337554 gram
so mass of ice is here = mass of ice melt + ice melt
mass of ice = 36.337554 + 2
mass of ice = 38.337554 gram
so original mass of the block of ice is 38.34 gram
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=