Answer:
The 96% confidence interval for the population proportion of customers satisfied with their new computer is (0.77, 0.83).
Step-by-step explanation:
We have to calculate a 96% confidence interval for the proportion.
We consider the sample size to be the customers that responded the survey (n=800), as we can not assume the answer for the ones that did not answer.
The sample proportion is p=0.8.

The standard error of the proportion is:

The critical z-value for a 96% confidence interval is z=2.054.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 96% confidence interval for the population proportion is (0.77, 0.83).
For part A: you will get 3 linear factors (as the degree of the polynomial is 3). perform the division using (x-1) as your known factor and you will get (x-1)(2x²+11x+15). you can then factor the (2x²+11x+15) to get 2x^3 + 9x^2 + 4x - 15 = (x-1)(2x+5)(x+3)
for part B: since 2x+5 will provide the greatest value (assuming x>0) of the 3 factors, then 2x+5=13. solve to get x=4. if x is 4, then the dimensions are 3'x13'x7' [just sub 4 into the x's for each factor]
for part C: as to the graphing calculator, I don't have one. However, if you solve each linear factor for when it is 0, those values will be the x-intercepts. So your graph should cross the x-asix at 1, -5/2, and -3
Y = x + 4
Slope = 1
Y-intercept = 4
Answer:
Step-by-step explanation:
The upper right angle is supplement to 130° and a corresponding angle to (3x + 5)
130 + (3x + 5) = 180
3x + 5 = 50
3x = 45
x = 15
That would be -12852/125 I believe