1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
10

What is the multiplicity of each of the roots of the graph of

Mathematics
2 answers:
skelet666 [1.2K]3 years ago
7 0

Answer:

C

Step-by-step explanation:

pantera1 [17]3 years ago
3 0

Answer:

The correct option is;

C. -3, multiplicity 2; -1, multiplicity 1; 1, multiplicity 1

Please find attached the required function graph

Step-by-step explanation:

To solve the equation f(x) = 2·x⁴ + 12·x³ + 16·x² -12·x - 18, by graphing the function, we have;

x {}       F(x)

-4{}       30

-3{}       0

-2{}       6

-1{}        0

0 {}      -18

1{}         0

2{}       150

The shape of a graph with multiplicity of 2

Given that the graph bounces of the horizontal axis at the y-intercept at point x = -3, the factor (x - 3) must be a quadratic of the form (x - 3)², thereby having a multiplicity of 2 in the solution which are;

x = 1, -1, and, giving

(x - 1)·(x + 1)·(x - 3)² = 0

Therefore, the correct option is -3, multiplicity 2; -1, multiplicity 1; 1 multiplicity 1.

You might be interested in
Algebra 1 ) U. Checkpoint: Systems of equations and inequalities LOW
krek1111 [17]

Answer:algebra ok

Step-by-step explanation:

7 0
3 years ago
Which inequality best represents the graph? O A. 2x + y = 6 O B. x + 2y 6 O c. 2r- y< 6 O D. 2x - y > -6 E. 2x + y26​
Misha Larkins [42]

Answer:

It would be A

Step-by-step explanation:

5 0
3 years ago
When you look at the two cylinders with these values of rand h, what do you notice about the proportions of the cylinders?
Klio2033 [76]

Answer:

One of the cylinders is short and wide, while the other is tall and thin.

Step-by-step explanation:

7 0
3 years ago
Simplify 3√ ̅10 + 7 √ ̅15 - 6 √ ̅10 - 4 √ ̅15
skelet666 [1.2K]

Answer:

-3√ ̅10+3 √ ̅15

Step-by-step explanation:

7 0
3 years ago
If A and B are two angles in standard position in Quadrant I, find cos( A +B ) for the given function values. sin A = 8/17 and c
horsena [70]

Answer:

Part 1) cos(A + B) = \frac{140}{221}

Part 2) cos(A - B) = \frac{153}{185}

Part 3) cos(A - B) = \frac{84}{85}

Part 4) cos(A + B) = -\frac{36}{85}

Part 5) cos(A - B) = \frac{63}{65}

Part 6) cos(A+ B) = -\frac{57}{185}

Step-by-step explanation:

<u><em>the complete answer in the attached document</em></u>

Part 1) we have

sin(A)=\frac{8}{17}

cos(B)=\frac{12}{13}

Determine cos (A+B)

we know that

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{8}{17})^2=1

cos^2(A)+\frac{64}{289}=1

cos^2(A)=1-\frac{64}{289}

cos^2(A)=\frac{225}{289}

cos(A)=\pm\frac{15}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{15}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{13})^2=1

sin^2(B)+\frac{144}{169}=1

sin^2(B)=1-\frac{144}{169}

sin^2(B)=\frac{25}{169}

sin(B)=\pm\frac{25}{169}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{5}{13}

step 3

Find cos(A+B)

substitute in the formula

cos(A + B) = \frac{15}{17} \frac{12}{13}-\frac{8}{17}\frac{5}{13}

cos(A + B) = \frac{180}{221}-\frac{40}{221}

cos(A + B) = \frac{140}{221}

Part 2) we have

sin(A)=\frac{3}{5}

cos(B)=\frac{12}{37}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{3}{5})^2=1

cos^2(A)+\frac{9}{25}=1

cos^2(A)=1-\frac{9}{25}

cos^2(A)=\frac{16}{25}

cos(A)=\pm\frac{4}{5}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{4}{5}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{37})^2=1

sin^2(B)+\frac{144}{1,369}=1

sin^2(B)=1-\frac{144}{1,369}

sin^2(B)=\frac{1,225}{1,369}

sin(B)=\pm\frac{35}{37}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{35}{37}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{4}{5} \frac{12}{37}+\frac{3}{5} \frac{35}{37}

cos(A - B) = \frac{48}{185}+\frac{105}{185}

cos(A - B) = \frac{153}{185}

Part 3) we have

sin(A)=\frac{15}{17}

cos(B)=\frac{3}{5}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{8}{17} \frac{3}{5}+\frac{15}{17} \frac{4}{5}

cos(A - B) = \frac{24}{85}+\frac{60}{85}

cos(A - B) = \frac{84}{85}

Part 4) we have

sin(A)=\frac{15}{17}        

cos(B)=\frac{3}{5}

Determine cos (A+B)

we know that    

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}      

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A+B)

substitute in the formula    

cos(A + B) = \frac{8}{17} \frac{3}{5}-\frac{15}{17} \frac{4}{5}

cos(A + B) = \frac{24}{85}-\frac{60}{85}

cos(A + B) = -\frac{36}{85}

Download odt
4 0
4 years ago
Other questions:
  • Rewrite 23/25 and 9/10 so they have a common denominator
    8·1 answer
  • the perimeter of a rectangle is 50 inches. The length of the rectangle is 10 inches. What method can be used to find the width o
    12·1 answer
  • Prove 3 root 7 is a rational number
    7·1 answer
  • What is the value of 3-(-2)?
    12·1 answer
  • Auto insurance Insurance companies collect annual pay-ments from drivers in exchange for paying for the cost of accidents.a) Why
    14·1 answer
  • How do you solve this ?
    9·1 answer
  • What are two decimals that can be rounded to 1.5
    10·1 answer
  • Given: Q = 7m + 3n, R = 11 - 2m, S = n + 5, and T = -m - 3n + 8.
    8·1 answer
  • Can someone please help me with this:) ​
    15·1 answer
  • Which of the following choices is equivalent to -9x &gt; -27?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!