1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
4 years ago
14

If A and B are two angles in standard position in Quadrant I, find cos( A +B ) for the given function values. sin A = 8/17 and c

os B = 12/13
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A -B ) for the given function values. sin A = 3/5 and cos B= 12/37
153/185
57/185
-57/185
-153/185

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 15/17 and cos = 3/5
-84/85
-36/85
36/85
84/85

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 15/17 and cos = 3/5
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 4/5 and cos = 5/13
-33/65
33/65
-63/65
63/65

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 3/5 and cos = 12/37
153/185
57/185
-57/185
-153/185
Mathematics
1 answer:
horsena [70]4 years ago
4 0

Answer:

Part 1) cos(A + B) = \frac{140}{221}

Part 2) cos(A - B) = \frac{153}{185}

Part 3) cos(A - B) = \frac{84}{85}

Part 4) cos(A + B) = -\frac{36}{85}

Part 5) cos(A - B) = \frac{63}{65}

Part 6) cos(A+ B) = -\frac{57}{185}

Step-by-step explanation:

<u><em>the complete answer in the attached document</em></u>

Part 1) we have

sin(A)=\frac{8}{17}

cos(B)=\frac{12}{13}

Determine cos (A+B)

we know that

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{8}{17})^2=1

cos^2(A)+\frac{64}{289}=1

cos^2(A)=1-\frac{64}{289}

cos^2(A)=\frac{225}{289}

cos(A)=\pm\frac{15}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{15}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{13})^2=1

sin^2(B)+\frac{144}{169}=1

sin^2(B)=1-\frac{144}{169}

sin^2(B)=\frac{25}{169}

sin(B)=\pm\frac{25}{169}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{5}{13}

step 3

Find cos(A+B)

substitute in the formula

cos(A + B) = \frac{15}{17} \frac{12}{13}-\frac{8}{17}\frac{5}{13}

cos(A + B) = \frac{180}{221}-\frac{40}{221}

cos(A + B) = \frac{140}{221}

Part 2) we have

sin(A)=\frac{3}{5}

cos(B)=\frac{12}{37}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{3}{5})^2=1

cos^2(A)+\frac{9}{25}=1

cos^2(A)=1-\frac{9}{25}

cos^2(A)=\frac{16}{25}

cos(A)=\pm\frac{4}{5}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{4}{5}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{37})^2=1

sin^2(B)+\frac{144}{1,369}=1

sin^2(B)=1-\frac{144}{1,369}

sin^2(B)=\frac{1,225}{1,369}

sin(B)=\pm\frac{35}{37}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{35}{37}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{4}{5} \frac{12}{37}+\frac{3}{5} \frac{35}{37}

cos(A - B) = \frac{48}{185}+\frac{105}{185}

cos(A - B) = \frac{153}{185}

Part 3) we have

sin(A)=\frac{15}{17}

cos(B)=\frac{3}{5}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{8}{17} \frac{3}{5}+\frac{15}{17} \frac{4}{5}

cos(A - B) = \frac{24}{85}+\frac{60}{85}

cos(A - B) = \frac{84}{85}

Part 4) we have

sin(A)=\frac{15}{17}        

cos(B)=\frac{3}{5}

Determine cos (A+B)

we know that    

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}      

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A+B)

substitute in the formula    

cos(A + B) = \frac{8}{17} \frac{3}{5}-\frac{15}{17} \frac{4}{5}

cos(A + B) = \frac{24}{85}-\frac{60}{85}

cos(A + B) = -\frac{36}{85}

Download odt
You might be interested in
Please Help! 50 points
Slav-nsk [51]

Answer:

shaded region

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Solve:<br> y" + 14y' + 49y = 8xe^-7x
erma4kov [3.2K]
The answer is 7x^2e-/8

8 0
3 years ago
Warm fronts and stationary fronts bring? (A) severely bad weather (B) clear skies (C) light precipitation (D) mid-latitude cyclo
wariber [46]

Answer:

C

Step-by-step explanation:

4 0
3 years ago
Match each expression to its equivalent standard form.
Alika [10]

Answer:

you have to advise me exercise for a month because I can't come so please give me a leave for one month because I can't come

8 0
3 years ago
Calculate $\left(\frac{9}{7}\right)^{2} \left(\frac{2}{7}\right)^{-2}$.
DerKrebs [107]

$\left(\frac{9}{7}\right)^{2} \left(\frac{2}{7}\right)^{-2}$

=

(\frac{81}{49} )( \frac{49}{4} )

=

( \frac{81}{1} )( \frac{1}{4} )

=

\frac{81}{4}

6 0
4 years ago
Other questions:
  • 74 increased by 3 times y
    5·1 answer
  • Using the formula a=p(1+r/n)^nt find how long it takes an investment to double if it is invested at 8% interest compounded month
    12·1 answer
  • Can anyone help me out? thanks
    5·2 answers
  • Solve the inequality. 4 + 9x &gt; 8 − 3x
    5·2 answers
  • What is the y-intercept of the function f (x)=-2/9x + 1/3
    6·1 answer
  • Solve the system by adding or subtracting<br> -3x-3y=9<br> 3x+8y=6
    15·1 answer
  • Simply 10^0 0 is exponent
    15·2 answers
  • Delaney bought a crate for her puppy when it was 3 months old. The crate is in the shape of a rectangular prism. Since the puppy
    13·1 answer
  • B
    10·1 answer
  • If a line has slope a, what is the slope of its reflection across the line y=x?Question content area bottomPart 1The slope of it
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!