1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
14

If A and B are two angles in standard position in Quadrant I, find cos( A +B ) for the given function values. sin A = 8/17 and c

os B = 12/13
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A -B ) for the given function values. sin A = 3/5 and cos B= 12/37
153/185
57/185
-57/185
-153/185

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 15/17 and cos = 3/5
-84/85
-36/85
36/85
84/85

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 15/17 and cos = 3/5
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 4/5 and cos = 5/13
-33/65
33/65
-63/65
63/65

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 3/5 and cos = 12/37
153/185
57/185
-57/185
-153/185
Mathematics
1 answer:
horsena [70]3 years ago
4 0

Answer:

Part 1) cos(A + B) = \frac{140}{221}

Part 2) cos(A - B) = \frac{153}{185}

Part 3) cos(A - B) = \frac{84}{85}

Part 4) cos(A + B) = -\frac{36}{85}

Part 5) cos(A - B) = \frac{63}{65}

Part 6) cos(A+ B) = -\frac{57}{185}

Step-by-step explanation:

<u><em>the complete answer in the attached document</em></u>

Part 1) we have

sin(A)=\frac{8}{17}

cos(B)=\frac{12}{13}

Determine cos (A+B)

we know that

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{8}{17})^2=1

cos^2(A)+\frac{64}{289}=1

cos^2(A)=1-\frac{64}{289}

cos^2(A)=\frac{225}{289}

cos(A)=\pm\frac{15}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{15}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{13})^2=1

sin^2(B)+\frac{144}{169}=1

sin^2(B)=1-\frac{144}{169}

sin^2(B)=\frac{25}{169}

sin(B)=\pm\frac{25}{169}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{5}{13}

step 3

Find cos(A+B)

substitute in the formula

cos(A + B) = \frac{15}{17} \frac{12}{13}-\frac{8}{17}\frac{5}{13}

cos(A + B) = \frac{180}{221}-\frac{40}{221}

cos(A + B) = \frac{140}{221}

Part 2) we have

sin(A)=\frac{3}{5}

cos(B)=\frac{12}{37}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{3}{5})^2=1

cos^2(A)+\frac{9}{25}=1

cos^2(A)=1-\frac{9}{25}

cos^2(A)=\frac{16}{25}

cos(A)=\pm\frac{4}{5}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{4}{5}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{37})^2=1

sin^2(B)+\frac{144}{1,369}=1

sin^2(B)=1-\frac{144}{1,369}

sin^2(B)=\frac{1,225}{1,369}

sin(B)=\pm\frac{35}{37}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{35}{37}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{4}{5} \frac{12}{37}+\frac{3}{5} \frac{35}{37}

cos(A - B) = \frac{48}{185}+\frac{105}{185}

cos(A - B) = \frac{153}{185}

Part 3) we have

sin(A)=\frac{15}{17}

cos(B)=\frac{3}{5}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{8}{17} \frac{3}{5}+\frac{15}{17} \frac{4}{5}

cos(A - B) = \frac{24}{85}+\frac{60}{85}

cos(A - B) = \frac{84}{85}

Part 4) we have

sin(A)=\frac{15}{17}        

cos(B)=\frac{3}{5}

Determine cos (A+B)

we know that    

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}      

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A+B)

substitute in the formula    

cos(A + B) = \frac{8}{17} \frac{3}{5}-\frac{15}{17} \frac{4}{5}

cos(A + B) = \frac{24}{85}-\frac{60}{85}

cos(A + B) = -\frac{36}{85}

Download odt
You might be interested in
Find the sum of deviation of all observations of the data 5, 8, 10, 15, 22 from their mean.​
ivann1987 [24]

Answer:

the sum of deviation of all observations of the data 5, 8, 10, 15, 22 from their mean. =26

Step-by-step explanation:

Mean=sum of observation/ No. of observation

={5+8+ 10+ 15 + 22}/5

=60/5=12

Sum of deviations

= |5- 12| + |8 – 12| + |10- 12| + |15- 12| + |22-12|

= 7+4+2+ 3+ 10

= 26

3 0
2 years ago
Twenty times a square of a positive integer plus 50 equals negative 40 times the square of the positive integer plus one-hundred
rusak2 [61]
20x^2+50 = -40x^2+110x [ Taking x as the unknown positive integer ]
4 0
3 years ago
7x2+3[81-(4x6)]<br> Simplify
4vir4ik [10]
P E M D A S

Pren
Equ
Multiply
Divide
Add 
Subtract
5 0
2 years ago
Read 2 more answers
What does 5/7c=13/14 equal
natita [175]
To find c, you must isolate it.
To do this, you must divide both sides by 5/7, since that is being multiplied by c and you must do the inverse to it to cancel it out in order to leave c by itself.

5/7c ÷ 5/7 = c

13/14 ÷ 5/7
To divide fractions, follow these steps:
Step 1- Turn the second fraction, 5/7 in this case, into its reciprocal. This means swapping the places of the numerator and denominator.
5/7 reciprocal = 7/5

Step 2- multiply the original first fraction and reciprocal second fraction.
13/14 • 7/5
13 • 7 = 91
14 • 5 = 70
13/14 ÷ 5/7 = 91/70

Step 3- Simplify if possible.
91/70
Since 70 can go into 90, you can turn this into a mixed number.
1 and 21/70
Now simplify 21/70.
Both can be divided by 7.
21 ÷ 7 = 3
70 ÷ 7 = 10
So simplified, 91/70 equals 1 and 3/10.
As a decimal, this is 1.3.

So the answer is c = 1.3, or 1 and 3/10.

Hope this helps :)
8 0
3 years ago
At the beginning of year 1, Bode invests $250 at an annual simple interest rate of 3%. He makes no deposits to or withdrawals fr
xz_007 [3.2K]

Answer:

D.A(n) = 250 + (n – 1)(0.03 • 250); $347.50

Step-by-step explanation:

we know that

The simple interest formula is equal to

A=P(1+rt)

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

in this problem we have

t=(14-1)=13\ years\\ P=\$250\\r=0.03

substitute in the formula above

A=\$250(1+0.03*13)

A=\$250(1.39)=\$347.50

8 0
3 years ago
Other questions:
  • The world record for the longest journey driven by car is 626,960 km. The longest journey by tractor is 21,199 km. Round each nu
    7·2 answers
  • Can someone please help me answer this.
    6·1 answer
  • In an all boys school, the heights of the student body are normally distributed with a mean of 71 inches and a standard deviatio
    9·1 answer
  • What fraction is equal to negative 3/7
    9·2 answers
  • 2/3 divided by 1/2 please I really need this!!
    7·2 answers
  • Yo, It's Michael Stallins this is my third account also, would you donate $ If I read an entire dictionary on stream?
    7·2 answers
  • Draw graph for equation 0.25x+0.50y&lt;3
    7·1 answer
  • A(-9, 8), B(-5,5), C(1, 13), D(-3, 16)
    9·1 answer
  • Help me pleaseeeeeeeeeeeee
    11·2 answers
  • _)) Miss Johnston has 80 gold stickers. She wants
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!