1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
14

If A and B are two angles in standard position in Quadrant I, find cos( A +B ) for the given function values. sin A = 8/17 and c

os B = 12/13
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A -B ) for the given function values. sin A = 3/5 and cos B= 12/37
153/185
57/185
-57/185
-153/185

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 15/17 and cos = 3/5
-84/85
-36/85
36/85
84/85

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 15/17 and cos = 3/5
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 4/5 and cos = 5/13
-33/65
33/65
-63/65
63/65

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 3/5 and cos = 12/37
153/185
57/185
-57/185
-153/185
Mathematics
1 answer:
horsena [70]3 years ago
4 0

Answer:

Part 1) cos(A + B) = \frac{140}{221}

Part 2) cos(A - B) = \frac{153}{185}

Part 3) cos(A - B) = \frac{84}{85}

Part 4) cos(A + B) = -\frac{36}{85}

Part 5) cos(A - B) = \frac{63}{65}

Part 6) cos(A+ B) = -\frac{57}{185}

Step-by-step explanation:

<u><em>the complete answer in the attached document</em></u>

Part 1) we have

sin(A)=\frac{8}{17}

cos(B)=\frac{12}{13}

Determine cos (A+B)

we know that

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{8}{17})^2=1

cos^2(A)+\frac{64}{289}=1

cos^2(A)=1-\frac{64}{289}

cos^2(A)=\frac{225}{289}

cos(A)=\pm\frac{15}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{15}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{13})^2=1

sin^2(B)+\frac{144}{169}=1

sin^2(B)=1-\frac{144}{169}

sin^2(B)=\frac{25}{169}

sin(B)=\pm\frac{25}{169}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{5}{13}

step 3

Find cos(A+B)

substitute in the formula

cos(A + B) = \frac{15}{17} \frac{12}{13}-\frac{8}{17}\frac{5}{13}

cos(A + B) = \frac{180}{221}-\frac{40}{221}

cos(A + B) = \frac{140}{221}

Part 2) we have

sin(A)=\frac{3}{5}

cos(B)=\frac{12}{37}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{3}{5})^2=1

cos^2(A)+\frac{9}{25}=1

cos^2(A)=1-\frac{9}{25}

cos^2(A)=\frac{16}{25}

cos(A)=\pm\frac{4}{5}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{4}{5}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{37})^2=1

sin^2(B)+\frac{144}{1,369}=1

sin^2(B)=1-\frac{144}{1,369}

sin^2(B)=\frac{1,225}{1,369}

sin(B)=\pm\frac{35}{37}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{35}{37}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{4}{5} \frac{12}{37}+\frac{3}{5} \frac{35}{37}

cos(A - B) = \frac{48}{185}+\frac{105}{185}

cos(A - B) = \frac{153}{185}

Part 3) we have

sin(A)=\frac{15}{17}

cos(B)=\frac{3}{5}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{8}{17} \frac{3}{5}+\frac{15}{17} \frac{4}{5}

cos(A - B) = \frac{24}{85}+\frac{60}{85}

cos(A - B) = \frac{84}{85}

Part 4) we have

sin(A)=\frac{15}{17}        

cos(B)=\frac{3}{5}

Determine cos (A+B)

we know that    

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}      

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A+B)

substitute in the formula    

cos(A + B) = \frac{8}{17} \frac{3}{5}-\frac{15}{17} \frac{4}{5}

cos(A + B) = \frac{24}{85}-\frac{60}{85}

cos(A + B) = -\frac{36}{85}

Download odt
You might be interested in
What is f(+3) if f(x) = 5 x
Damm [24]

Answer:

f(x) = 5x \\ f(3) = 5(3) =  \boxed{15}

<h3><u>f(</u><u>3</u><u>) =15</u> is the right answer.</h3>
4 0
3 years ago
What is the unit rate for the ratio 288Points/6 Games
dedylja [7]
Literally just divide are you slow
5 0
3 years ago
Read 2 more answers
(1 point) Consider the function f(x)=−x3+2x2+2x+1 Find the average slope of this function on the interval (−2,6). equation edito
Whitepunk [10]

Answer:

Step-by-step explanation:

Given is a function

f(x)=-x^3+2x^2+2x+1

f(6) = -6^3+2(6^2)+2(6)+1\\=-131\\

f(-2) = -(-2)^3+2(-2)^2+2(-2)+1\\=13

Average slope of this function is change of f(x) in (-2,6)/change of x in (-2,6)

= \frac{-131-13}{8} \\=-18

By mean value theorem there exists a c such that f'(c) = -18

i.e. -3x^2+4x+2 =-8\\3x^2-4x-10 =0\\

Using quadratic formula

x = 2.61, -1.277

Out of these only 2.61 lies in the given interval

c = 2.61

7 0
4 years ago
Please help me<br><br> What is 8/1 ​ ÷ 4/3
creativ13 [48]

Answer:

6

Step-by-step explanation:

To check my work I used desmos

5 0
3 years ago
The surface area of a square pyramid is 136 square inches. The base is 4 inches. What is the slant area
zheka24 [161]
34 inches. How you work it out would be base x height. This means to work out the height, you divide the total area by the base. 136/4 is 34
4 0
4 years ago
Other questions:
  • Emma ran 3.5 kilometers while grace ran 380 meters who ran further ???
    11·2 answers
  • brian just started using a budget he proudly tells friends that his budget helps him know where his money is being spent it allo
    14·2 answers
  • About travel 27 miles in two hours at this rate how many miles will the boat travel in 1/2 hour
    5·1 answer
  • An architect has a scale drawing of a back porch that has a length and a width of 36 x 75 feet. If the Architect’s drawing is 4
    11·1 answer
  • Annie was given $14 for her birthday. She now has $53. How much money did she start with?
    11·1 answer
  • according to the general equation for conditional probability of p(an B) = 3/10 and P(B)= 3/5, what is P(A|B)
    10·2 answers
  • Joe traveled 125 miles in 5 hours. How many miles would he travel in 1 hour?
    15·2 answers
  • What is the mass of the tomato?
    9·2 answers
  • A rectangle has a width of 9 inches and a length of 15 inches. If the rectangle is enlarged by a scale factor of 3/2, what is th
    10·1 answer
  • 5x divided by 5 =???????
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!