1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
14

If A and B are two angles in standard position in Quadrant I, find cos( A +B ) for the given function values. sin A = 8/17 and c

os B = 12/13
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A -B ) for the given function values. sin A = 3/5 and cos B= 12/37
153/185
57/185
-57/185
-153/185

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 15/17 and cos = 3/5
-84/85
-36/85
36/85
84/85

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 15/17 and cos = 3/5
-220/221
-140/221
140/221
220/221

If A and B are two angles in standard position in Quadrant I, find cos( A - B) for the given function values.
sin A = 4/5 and cos = 5/13
-33/65
33/65
-63/65
63/65

If A and B are two angles in standard position in Quadrant I, find cos( A + B) for the given function values.
sin A = 3/5 and cos = 12/37
153/185
57/185
-57/185
-153/185
Mathematics
1 answer:
horsena [70]3 years ago
4 0

Answer:

Part 1) cos(A + B) = \frac{140}{221}

Part 2) cos(A - B) = \frac{153}{185}

Part 3) cos(A - B) = \frac{84}{85}

Part 4) cos(A + B) = -\frac{36}{85}

Part 5) cos(A - B) = \frac{63}{65}

Part 6) cos(A+ B) = -\frac{57}{185}

Step-by-step explanation:

<u><em>the complete answer in the attached document</em></u>

Part 1) we have

sin(A)=\frac{8}{17}

cos(B)=\frac{12}{13}

Determine cos (A+B)

we know that

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{8}{17})^2=1

cos^2(A)+\frac{64}{289}=1

cos^2(A)=1-\frac{64}{289}

cos^2(A)=\frac{225}{289}

cos(A)=\pm\frac{15}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{15}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{13})^2=1

sin^2(B)+\frac{144}{169}=1

sin^2(B)=1-\frac{144}{169}

sin^2(B)=\frac{25}{169}

sin(B)=\pm\frac{25}{169}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{5}{13}

step 3

Find cos(A+B)

substitute in the formula

cos(A + B) = \frac{15}{17} \frac{12}{13}-\frac{8}{17}\frac{5}{13}

cos(A + B) = \frac{180}{221}-\frac{40}{221}

cos(A + B) = \frac{140}{221}

Part 2) we have

sin(A)=\frac{3}{5}

cos(B)=\frac{12}{37}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{3}{5})^2=1

cos^2(A)+\frac{9}{25}=1

cos^2(A)=1-\frac{9}{25}

cos^2(A)=\frac{16}{25}

cos(A)=\pm\frac{4}{5}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{4}{5}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{37})^2=1

sin^2(B)+\frac{144}{1,369}=1

sin^2(B)=1-\frac{144}{1,369}

sin^2(B)=\frac{1,225}{1,369}

sin(B)=\pm\frac{35}{37}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{35}{37}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{4}{5} \frac{12}{37}+\frac{3}{5} \frac{35}{37}

cos(A - B) = \frac{48}{185}+\frac{105}{185}

cos(A - B) = \frac{153}{185}

Part 3) we have

sin(A)=\frac{15}{17}

cos(B)=\frac{3}{5}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{8}{17} \frac{3}{5}+\frac{15}{17} \frac{4}{5}

cos(A - B) = \frac{24}{85}+\frac{60}{85}

cos(A - B) = \frac{84}{85}

Part 4) we have

sin(A)=\frac{15}{17}        

cos(B)=\frac{3}{5}

Determine cos (A+B)

we know that    

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}      

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A+B)

substitute in the formula    

cos(A + B) = \frac{8}{17} \frac{3}{5}-\frac{15}{17} \frac{4}{5}

cos(A + B) = \frac{24}{85}-\frac{60}{85}

cos(A + B) = -\frac{36}{85}

Download odt
You might be interested in
Pls help ill mark brainliest!:) thank you&lt;3
murzikaleks [220]

Answer:

(-26, 32)

Step-by-step explanation:

6 0
3 years ago
I Need some help pleasee &lt;3
Readme [11.4K]

Answer: 5

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is 3(x +3) -10 • 5
olga nikolaevna [1]
The answers is =3x−41
8 0
3 years ago
Of the 320 students in 8th grade 3/8 have a pet how many students in 8th grade have a pet
yaroslaw [1]
320➗8= 40
40✖️3= 120
120/320
120 students have pets

Hope this helps! :3
5 0
3 years ago
What is the slope of the line parallel to the line that passes through -3,1 and 3,7
joja [24]

Answer:

The slope of the line is 1 , because the slope of another line parrallel to it is 1 and we know the when two lines are parralel the slope are equal

5 0
3 years ago
Other questions:
  • Add or subtract as indicated and write the result in standard form. 5i - (-5 - i)
    14·1 answer
  • What is the answer for -6 - d= -2d​
    5·1 answer
  • A national park has eighty thousand , nine- hundred twenty -three and eighty-six hundredths acres of land with shows thus in sta
    11·1 answer
  • Help please , I'm so confused
    10·1 answer
  • What is the translation shown in the graph?
    6·2 answers
  • Pls help my mom will literally scream at me lol . thank you sm:)
    15·1 answer
  • Can anyone please help with my last math problem pls all of my assignments gotta be turned in by tonight so I would really appre
    6·2 answers
  • Find the value of x ?
    14·1 answer
  • Put the following equation of a line into slope-intercept form, simplifying all fractions. 18x + 3y = -21 ​
    5·2 answers
  • The coordinates of the points P, Q and R are given by (-2, 1), (1, 4) and (4, k) respectively. Find the value(s) of k if
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!