The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is
In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then
The pink bar graph is 150
W=-21 Move the four over to the 24 leaving you with negative 20 and then “subtract” one
Answer:
19/50
Step-by-step explanation:
Answer:
X=-5y/13+90/13, Y=-13x/5+18
Step-by-step explanation:
You need to solve the equation for X and Y.
Solving for X:
13x+5y=90
Subtract 5y: 13x=-5y+90
Divide by 13: x=-5y/13+90/13
--
For Y:
13x+5y=90
Subtract 13x: 5y=-13x+90
Divide by 5: y=-13x/5+90/5
(Simplifies to -13x/5+18)