Well I figured out at his current pace, he would finish the 1100 remaining meters in 200 seconds. However, he needs to complete it in 180 seconds. I'm not sure how to find out how long he has to accelerate at 0.20 m/s/s to complete it in 180 seconds.
Answer:
it comes from your knowledge and the information you have to get the reason why that is the answer so you are putting together things that you already know what the new information you have
Because it on by it's self floating around not forming part of something
Acceleration of an object is depended upon the net force acting open the object and the mass of the object
Answer:
a) 9.99 s
b) 538 m
c) 20.5 s
d) 1160 m
Explanation:
Given:
x₀ = 0 m
y₀ = 49.0 m
v₀ = 113 m/s
θ = 60.0°
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
a) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find t.
vᵧ = aᵧ t + v₀ᵧ
(0 m/s) = (-9.8 m/s²) t + (113 sin 60.0° m/s)
t ≈ 9.99 s
b) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find y.
vᵧ² = v₀ᵧ² + 2aᵧ (y − y₀)
(0 m/s)² = (113 sin 60° m/s)² + 2 (-9.8 m/s²) (y − 49.0 m)
y ≈ 538 m
c) When the projectile lands, y = 0 m. Find t.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (49.0 m) + (113 sin 60° m/s) t + ½ (-9.8 m/s²) t²
You'll need to solve using quadratic formula:
t ≈ -0.489, 20.5
Since negative time doesn't apply here, t ≈ 20.5 s.
d) When the projectile lands, y = 0 m. Find x. (Use answer from part c).
x = x₀ + v₀ₓ t + ½ aₓ t²
x = (0 m) + (113 cos 60° m/s) (20.5 s) + ½ (0 m/s²) (20.5 s)²
x ≈ 1160 m