Answer:
The correct answer is option A.
Explanation:
Force is defined as push or pull on an object with mass due to which change velocity occurs (acceleration).


if ,v = constant
Net force on the vehilce
F = Normal - Weight
0 = N = W
N = W
So, the force experienced by the object will be due to its mass, and higher the mass more will be the experienced by an object.So, large truck will experience larger net force.
Answer:
v = 2.029 m/s
Explanation:
Given
L = 84.0 cm ⇒ R = 0.5*L = 0.5*84 cm = 42 cm = 0.42 m
m₁ = 0.600 kg
m₂ = 0.200 kg
g = 9.8 m/s²
u₁ = u₂ = 0 m/s
v₁ = ?
v₂ = ?
Due to gravity, the bar oscillates and becomes vertical. The mass that occupies the lower position is the one with the highest torque. The one that reduces the potential energy (the system tends to the position of minimum energy). This is achieved if the mass that goes down is 0.6kg (that goes down 42cm) and the one that goes up is 0.2kg (goes up 42cm).
In this system mechanical energy is conserved, so we can match its value in the horizontal position with the one in the vertical.
then
Ei = Ki + Ui = 0.5*(m₁+m₂)*(0)² + (m₁+m₂)*9.8*(0) = 0 J
Ef = Kf + Uf
⇒ Kf = 0.5*(m₁+m₂)*v² = 0.5*(0.6+0.2)*v² = 0.4*v²
⇒ Uf = m₁*g*h₁ + m₂*g*h₂ = 0.6*9.8*(-0.42) + 0.2*9.8*0.42 = - 1.6464
⇒ Ef = Kf + Uf = 0.4*v² - 1.6464
Since
0 = 0.4*v² - 1.6464 ⇒ v = 2.029 m/s
v is the same value due to the wooden rod is pivoted about a horizontal axis through its center and the masses are on opposite ends.
v₁ = v₂ = v ⇒ ω₁*R₁ = ω₂*R₂ ⇒ ω₁*R = ω₂*R ⇒ ω₁ = ω₂ = ω
⇒ v = ω*R
Answer:
Explanation:
We shall apply Ampere's circuital law to find out magnetic field . It is given as follows.
∫B.dl = μ₀ I , B is magnetic field , I is current , μ₀ is permeability .
Radius of the wire r = 1.2 x 10⁻³ m
magnetic field B will be circular in shape around the wire. If B is uniform
∫B.dl = B x 2πr
B x 2πr = μ₀ I
B = μ₀ I / 2πr
= 4π x 10⁻⁷ x 37 /2πx1.2 x 10⁻³
= 10⁻⁷ x 2x37 / 1.2 x 10⁻³
= 61.67 x 10⁻⁴ T
= 62 x 10⁻⁴ T
Answer:
acceleration = 0.2625 m/s²
Explanation:
acceleration = ( final velocity - initial velocity ) / time
Here the final velocity is 10.6 m/s and initial velocity is 6.4 m/s and time is 16 s.
using the equation:
acceleration = ( 10.6 - 6.4 ) / 16
= 0.2625 m/s²