I would say 150 joules, i don't know if its right though check
Answer:
Option b. Effective nuclear charge increases as we move to the right across a row in the periodic table
Explanation:
The <em>effective nuclear charge </em>is a measure of how strong the protons in the nucleus of an atom attract the outermost electrons of such atom.
The <em>effective nuclear charge</em> is the net positive charge experienced by valence electrons and is calculated (as an approximation) by the equation: Zeff = Z – S, where Z is the atomic number and S is the number of shielding electrons.
The shielding electrons are those electrons in between the interesting electrons and the nucleus of the atom.
Since the shielding electrons are closer to the nucleus, they repel the outermost electrons and so cancel some of the attraction exerted by the positive charge of the nucleus, meaning that the outermost electrons feel less the efect of attraction of the protons. That is why in the equation of Zeff, the shielding electrons (S) subtract the total from the atomic number Z.
The <em>effective nuclear charge</em>, then, is responsible for some properties and trends in the periodic table. Here, you can see how this explains the trend of the atomic radius (size of the atom) accross a row in the periodic table.
- As the<em> effective nuclear charge</em> is larger, in a same row of the periodic table, the shielding effect is lower, the outermost electrons are more strongly attracted by the nucleus, and the size of the atoms decrease. That is why as we move to the right in the periodic table, the size of the atoms decrease.
Answer:
B
Explanation:
Newton’s Second Law of Motion
Newton’s Second Law of Motion states that ‘when an object is acted on by an outside force, the mass of the object equals the strength of the force times the resulting acceleration’.
This can be demonstrated dropping a rock or and tissue at the same time from a ladder. They fall at an equal rate—their acceleration is constant due to the force of gravity acting on them.
The rock's impact will be a much greater force when it hits the ground, because of its greater mass. If you drop the two objects into a dish of water, you can see how different the force of impact for each object was, based on the splash made in the water by each one.
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6
Answer:
Explanation: Here we have given a direct equation . There for no need to worry .
P = I²×R
P = (12)² ×100
P = 14400W = 14.4 kW
For second one
P = I² ×R
200 = I²×150
I = √200/150
I = 1.15 A