Answer:
The speed of the spider is v = (2g*L*(1-cosθ))^1/2
Explanation:
using the energy conservation equation we have to:
Ek1 + Ep1 = Ek2 + Ep2
where
Ek1 = kinetic energy = 0
Ep1 = potential energy = m*g*L*cosθ
Ek2 = (m*v^2)/2
Ep2 = m*g*L
Replacing, we have:
0 - m*g*L*cosθ = (m*v^2)/2 - m*g*L
(m*v^2)/2 = m*g*L*(1-cosθ)
v^2 = 2g*L*(1-cosθ)
v = (2g*L*(1-cosθ))^1/2
The next step is -748 divide by -11 is 68 m (answer) the pic got cropped sorry
The tension has to hold the part of the weight in the direction of the string:
T = mg*cos(theta)
Theta=0, whole weight, theta=90, T=0, if the pendulum is horizontal, the string will be loose! Yeah
We getting addicted so it keeps us from getting bored
Answer:
Part a)
V = 18.16 V
Part b)

Part c)
P = 672 Watt
Part d)
V = 5.84 V
Part e)

Explanation:
Part a)
When battery is in charging mode
then the potential difference at the terminal of the cell is more than its EMF and it is given as

here we have



now we have

Part b)
Rate of energy dissipation inside the battery is the energy across internal resistance
so it is given as



Part c)
Rate of energy conversion into EMF is given as



Now battery is giving current to other circuit so now it is discharging
now we have
Part d)



Part e)
now the rate of energy dissipation is given as


