Ayou do it the exact same as whole number fractions but you might have to be more mindfull of the decimals
Step-by-step explanation:
Answer:
Yes by SSS because you have the same hypotenuse and same hatch marks on other sides
Answer:
This is ezz lol.
Step-by-step explanation:
Your answer would be 1/5
Answer:
a) <u>0.4647</u>
b) <u>24.6 secs</u>
Step-by-step explanation:
Let T be interval between two successive barges
t(t) = λe^λt where t > 0
The mean of the exponential
E(T) = 1/λ
E(T) = 8
1/λ = 8
λ = 1/8
∴ t(t) = 1/8×e^-t/8 [ t > 0]
Now the probability we need
p[T<5] = ₀∫⁵ t(t) dt
=₀∫⁵ 1/8×e^-t/8 dt
= 1/8 ₀∫⁵ e^-t/8 dt
= 1/8 [ (e^-t/8) / -1/8 ]₀⁵
= - [ e^-t/8]₀⁵
= - [ e^-5/8 - 1 ]
= 1 - e^-5/8 = <u>0.4647</u>
Therefore the probability that the time interval between two successive barges is less than 5 minutes is <u>0.4647</u>
<u></u>
b)
Now we find t such that;
p[T>t] = 0.95
so
t_∫¹⁰ t(x) dx = 0.95
t_∫¹⁰ 1/8×e^-x/8 = 0.95
1/8 t_∫¹⁰ e^-x/8 dx = 0.95
1/8 [( e^-x/8 ) / - 1/8 ]¹⁰_t = 0.95
- [ e^-x/8]¹⁰_t = 0.96
- [ 0 - e^-t/8 ] = 0.95
e^-t/8 = 0.95
take log of both sides
log (e^-t/8) = log (0.95)
-t/8 = In(0.95)
-t/8 = -0.0513
t = 8 × 0.0513
t = 0.4104 (min)
so we convert to seconds
t = 0.4104 × 60
t = <u>24.6 secs</u>
Therefore the time interval t such that we can be 95% sure that the time interval between two successive barges will be greater than t is <u>24.6 secs</u>
Answer:
-99
Step-by-step explanation:
![a = 15 \\ d = - 6 \\ {n}^{th} term = a + (n + 1)d = 15 + (n - 1)( - 6) \\ {20}^{th} term =15 + (20 - 1)( - 6) = 15 - 114 = - 99](https://tex.z-dn.net/?f=a%20%3D%2015%20%5C%5C%20d%20%3D%20%20-%206%20%5C%5C%20%20%7Bn%7D%5E%7Bth%7D%20term%20%3D%20a%20%2B%20%28n%20%2B%201%29d%20%20%3D%2015%20%2B%20%28n%20-%201%29%28%20-%206%29%20%5C%5C%20%20%7B20%7D%5E%7Bth%7D%20term%20%3D15%20%2B%20%2820%20-%201%29%28%20-%206%29%20%3D%2015%20-%20114%20%3D%20%20-%2099%20)