Answer: Diagram 4
Explanation: Diagram 1 represents a state in which particles are closely packed , thus cannot be a representation of gas.
Diagram 2 represents a state in which particles are loosely packed , thus can be a representation of gas.
Diagram 3 represents a state in which particles are closely packed , thus can be a representation of a solid.
Diagram 4 represents a state in which particles are loosely packed , thus can be a representation of gas. It also represents the particles in ionized form. Particles are existing as ions bearing positive and negative charges.
Answer:
Percent composition tells you which types of atoms (elements) are present in a molecule and their levels. Percent composition can also tell you about the different elements present in an ionic compound as well.
Answer: 67 mmHg
Explanation:
According to Dalton's Gas Law, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 512 mmHg
P(oxygen) = 332 mmHg
P(carbon mono-oxide) = 113 mmHg
Remaining pressure (P3) = ?
To get P3, apply Dalton's Gas Law formula
Ptotal = P(oxygen) + P(carbon mono-oxide) + P3
512 mmHg = 332 mmHg + 113 mmHg + P3
512 mmHg = 445 mmHg + P3
P3 = 512 mmHg - 445 mmHg
P3 = 67 mmHg
Thus, the remaining pressure is 67 mmHg
I think this should be done by yourself if it's your paragraph you can not be marked for plagiarism