The electron transport chain (ETC) is the final step of cellular respiration and takes place in the mitochondrion.
- The final step in cellular respiration is the electron transport chain. This is sometimes abbreviated as ETC. ETC needs oxygen, which means aerobic process. It occurs at the edges of the inner lining of mitochondria. These handles are called cristae.
Carbon fixation is the process in which plants remove the carbon from atmospheric carbon dioxide and turn it into organic molecules like carbohydrates.
Because different type of plants are located in regions with different conditions they are different types of carbon fixation. Plants that live in arid regions need to conserve water, while plants that live in more moist conditions will not need to conserve water.
The carbon fixation in C3 plants is one-step process. An oxidation reaction occurs because of the enzyme RuBisCo. During the oxidation some of the energy used in photosynthesis is lost in a process known as photorespiration.
Step One - Obtain a clean microscope slide.
Step Two - Place a drop of liquid on the slide. This is the “wet” part of the wet mount. The liquid used depends on the type of cell being viewed:
If examining a plant cell, tap water can be used.
If examining an animal cell, physiological saline (or contact lens solution) must be used, because if plain water is used, the cell will explode from osmotic pressure. Unlike plant cells and bacteria, animal cells have no cell wall to structurally support them.
Step Three - Obtain the specimen to be used. Some introductory biology classics for viewing include:
Skin of an onion bulb: In order to view the cells, a very thin layer of skin must be obtained. Take a single layer of onion and bend it towards the shiny side. After it snaps, pull gently, and a transparent layer of skin, similar to Scotch tape, will appear.
Elodea leaf: Elodea leaves are two cell layers thick. The cells in one layer are smaller than the cells in the other, so elodea leaves can be used to better understand a microscope's depth of field.
Cheek cells: Human epithelial cells can be obtained by gently rubbing a toothpick on the inside of the mouth, and then swirling the toothpick in the physiological saline on the slide.
Pond water: Obtaining some water from a pond makes wet mount preparation a breeze, since the water and the specimens are both included.
Hope this helps
Answer:
Genetic drift is change in allele frequencies in a population from generation to generation that occurs due to chance events. To be more exact, genetic drift is change due to "sampling error" in selecting the alleles for the next generation from the gene pool of the current generation.Explanation:
Answer:
The possible fate of the cell that it may turn cancerous.
Explanation:
The cells present in the body generally work in harmony. However, if a cell attains a mutation, it can make it proliferate in the case when it should not do, and make it thrive in the case when other cells are dying. Due to proliferation, the unusual cell produces more abnormal cells also known as cancerous cells. These cancerous cells become more favorable in comparison to the normal cells due to the phenomenon of natural selection. These cells eventually result in a lethal form of tumors.
In the normal cells, the destructed gene or the damaged cells get repaired easily, in case if the damage is worse the cell dies. A protein known as p53 helps in repairing damaged cells or kills them if the damage is too severe. But in the case of cancer cells, the p53 protein does not work appropriately as they possess a mutated or changed form of p53 protein. Thus, in the case of cancerous cells, the rate of repair lags behind the rate of mutation, which makes the cancer cells thrive and increase in numbers resulting in further destruction.