1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
7

PLZ HELP QUICK

Mathematics
2 answers:
zalisa [80]3 years ago
7 0

Answer:

100 students for every 2 buses and  1 teacher per 25 students

Step-by-step explanation:

rodikova [14]3 years ago
7 0

Answer:

4 pencils for each student

8 students per team

Step-by-step explanation:

it is on EDG :)

You might be interested in
Calculate the total perimeter and area of the shaded ring​
Vlad1618 [11]

Answer:

be specific

Step-by-step explanation:

which shaded eing

4 0
3 years ago
What is the midpoint of (-7,5)(7,3)
Naddika [18.5K]

Answer:

(1,4)

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
What is the equation in slope-intercept form that passes through the points (-4, 47) and (2, -16)?
Whitepunk [10]

Answer:

y = 10.5x - 37

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations: BPEMDAS

<u>Algebra I</u>

Equality Properties

Slope Formula: m=\frac{y_2-y_1}{x_2-x_1}

Slope-Intercept Form: y = mx + b

  • m - slope
  • b - y-intercept

Step-by-step explanation:

<u>Step 1: Define</u>

Point (-4, 47)

Point (2, -16)

<u>Step 2: Find slope </u><em><u>m</u></em>

  1. Substitute:                    m=\frac{-16-47}{2+4}
  2. Subtract/Add:               m=\frac{63}{6}
  3. Simplify:                        m=\frac{21}{2}

<u>Step 3: Find y-intercept </u><em><u>b</u></em>

  1. Define:                    y = 21/2x + b
  2. Substitute:              -16 = 21/2(2) + b
  3. Multiply:                  -16 = 21 + b
  4. Isolate <em>b</em>:                 -37 = b
  5. Rewrite:                   b = -37

<u>Step 4: Write linear equation</u>

<em>Combine all parts.</em>

y = 21/2x - 37

y = 10.5x - 37

And we have our final answer!

5 0
3 years ago
Find the base in the following problem. 100 is 19% of what number?
Ket [755]
526.32

I would recommend using an inequality. 100/x=19/100 and solve from there.
4 0
4 years ago
This problem asks for Taylor polynomials forf(x) = ln(1 +x) centered at= 0. Show Your work in an organized way.(a) Find the 4th,
stich3 [128]

Answer:

a) The 4th degree , 5th degree and sixth degree polynomials

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

b)The nth degree Taylor polynomial for f(x) centered at x = 0, in expanded form.

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

Step-by-step explanation:

Given the polynomial function f(x) = log(1+x) …...(1) centered at x=0

      f(x) = log(1+x) ……(1)

using formula \frac{d}{dx} logx =\frac{1}{x}

Differentiating Equation(1) with respective to 'x' we get

f^{l} (x) = \frac{1}{1+x} (\frac{d}{dx}(1+x)

f^{l} (x) = \frac{1}{1+x} (1)  ….(2)

At x= 0

f^{l} (0) = \frac{1}{1+0} (1)= 1

using formula \frac{d}{dx} x^{n-1}  =nx^{n-1}

Again Differentiating Equation(2) with respective to 'x' we get

f^{l} (x) = \frac{-1}{(1+x)^2} (\frac{d}{dx}((1+x))

f^{ll} (x) = \frac{-1}{(1+x)^2} (1)    ….(3)

At x=0

f^{ll} (0) = \frac{-1}{(1+0)^2} (1)= -1

Again Differentiating Equation(3) with respective to 'x' we get

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (\frac{d}{dx}((1+x))

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (1)=  \frac{(-1)^2 (2)!}{(1+x)^3} ….(4)

At x=0

f^{lll} (0) = \frac{(-1)(-2)}{(1+0)^3} (1)

f^{lll} (0) = 2

Again Differentiating Equation(4) with respective to 'x' we get

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (\frac{d}{dx}((1+x))

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4} ....(5)

f^{lV} (0) = \frac{(2(-3))}{(1+0)^4}

f^{lV} (0) = -6

Again Differentiating Equation(5) with respective to 'x' we get

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} (\frac{d}{dx}((1+x))

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5} .....(6)

At x=0

f^{V} (x) = 24

Again Differentiating Equation(6) with respective to 'x' we get

f^{V1} (x) = \frac{(2(-3)(-4)(-5))}{(1+x)^6} (\frac{d}{dx}((1+x))

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

and so on...

The nth term is

f^{n} (x) =  = \frac{(-1)^{n-1} (n-1)!}{(1+x)^n}

Step :-2

Taylors theorem expansion of f(x) is

f(x) = f(a) + \frac{x}{1!} f^{l}(x) +\frac{(x-a)^2}{2!}f^{ll}(x)+\frac{(x-a)^3}{3!}f^{lll}(x)+\frac{(x-a)^4}{4!}f^{lV}(x)+\frac{(x-a)^5}{5!}f^{V}(x)+\frac{(x-a)^6}{6!}f^{VI}(x)+...….. \frac{(x-a)^n}{n!}f^{n}(x)

At x=a =0

f(x) = f(0) + \frac{x}{1!} f^{l}(0) +\frac{(x)^2}{2!}f^{ll}(0)+\frac{(x)^3}{3!}f^{lll}(0)+\frac{(x)^4}{4!}f^{lV}(0)+\frac{(x)^5}{5!}f^{V}(0)+\frac{(x)^6}{6!}f^{VI}(0)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

Substitute  all values , we get

f(x) = f(0) + \frac{x}{1!} (1) +\frac{(x)^2}{2!}(-1)+\frac{(x)^3}{3!}(2)+\frac{(x)^4}{4!}(-6)+\frac{(x)^5}{5!}(24)+\frac{(x)^6}{6!}(-120)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

On simplification we get

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

4 0
3 years ago
Other questions:
  • Need help Asap
    10·1 answer
  • Can I have the answer for c pleaseee ASAP
    8·1 answer
  • Given g(x) =<br>√x-4<br>and<br>h(x) = 2x-8.<br>What are the restrictions on the domain of goh?​
    7·2 answers
  • Is 5 rational or irrational?
    10·1 answer
  • Enter an absolute-value equation whose solutions are graphed on the number line. -1 1
    7·1 answer
  • One more geometry question! Need as soon as possible!
    15·1 answer
  • Which question is being asked in this story problem?
    15·1 answer
  • 7th grade math help me pleaseee
    13·2 answers
  • Evaluate the expression 9-3/4 x (3/5÷1/8
    13·1 answer
  • If f(x) = 5x 40, what is f(x) when x = –5? –9 –8 7 15
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!