Answer:
y=3/-1x+4
Step-by-step explanation:
Okay so first thing you need to know is that if there is an ordered pair (x, y) where x is 0, your y-intercept is your y. For example, your problem has (0, 4) your x is 0 and your y is 4. Therefore your y-intercept is 4 which is the b. To find your mx, or slope, you need to do (y2-y1)/(x2-x1). Your y2 will be your y in your second ordered pair and your y1 will be in your y in the first ordered pair. Same for your x. So, (4-1)/(0-1) which equals 3/-1. 3/-1 is your slope. So, your answer in slop intercept form is: y= 3/-1x+4. You could also try y= -3x+4 if that makes you more comfortable.
I know this is long this is my first time doing this lol.
Answer:
y = -6; -3; 0
Step-by-step explanation:
To quickly solve this problem, we can use a graphing tool or a calculator to plot the equation.
Please see the attached image below, to find more information about the graph
The equation is:
f(x) = 2x+2 , x < -3
f(x) = x, x = -3
f(x) = - x -2 , x > -3
From the graph, we can see that the values are
y = -6; -3; 0
We know that the building must form a right angle with the ground, so the triangle formed by the ladder, the wall, and the distance between the base of the ladder and the wall is a right triangle. We can use the Pythagorean theorem to find the distance the ladder is from the building.
a^2 + b^2 = c^2
We know that the ladder is the hypotenuse because it is opposite the right angle.
a^2 + b^2 = 20^2
Substitute the length of the other side and solve.
a^2 + 17^2 = 20^2
a^2 + 289 = 400
a^2 = 111
The distance from the wall to the bottom of the ladder is the square root of 111 or approximately 10.5357 feet
Answer: segment
Step-by-step explanation:
El perímetro del lote tiene una medida de 130 · p - 12 unidades.
<h3>¿Cuál es la longitud del cerco perimetral para un lote?</h3>
El perímetro es la suma de las longitudes de los lados de una figura, un rectángulo tiene cuatro lados, dos pares de lados iguales. En consecuencia, el perímetro del lote es el siguiente:
s = 2 · w + 2 · l
Donde:
- w - Ancho del lote.
- l - Largo del lote.
- s - Perímetro del lote.
Si sabemos que w = 25 · p - 8 y l = 40 · p + 2, entonces el perímetro del lote es:
s = 2 · (25 · p - 8) + 2 · (40 · p + 2)
s = 50 · p - 16 + 80 · p + 4
s = 130 · p - 12
El perímetro tiene una medida de 130 · p - 12 unidades.
<h3>Observación</h3>
No se ha podido encontrar una figura o imagen asociada al enunciado del problema. Sin embargo, se puede inferir que el lote tiene una forma rectangular debido a las medidas utilizadas. En consecuencia, asumimos que la medida del ancho es igual a 25 · p - 8 unidades y del largo es igual a 40 · p + 2 unidades.
Para aprender más sobre perímetros: brainly.com/question/17127243
#SPJ1