Answer:

Step-by-step explanation:
<u>Diagonal of a Square</u>
Given a square of length side a, the length of the diagonal is

The diagonal of a rectangle of sides x and y is

The sides have lengths 12 cm and 14 cm, the diagonal is


Since this value is the same of the diagonal of certain square, we can say

Dividing by 



- <u>The </u><u>sum</u><u> </u><u>of </u><u>the </u><u>number </u><u>in </u><u>each </u><u>of </u><u>the </u><u>four </u><u>rows </u><u>is </u><u>the </u><u>same </u>
- <u>The </u><u>sum </u><u>of </u><u>the </u><u>numbers </u><u>in </u><u>each </u><u>of </u><u>the </u><u>three </u><u>columns </u><u>is </u><u>the </u><u>same</u>
- <u>The </u><u>sum </u><u>of </u><u>any </u><u>row </u><u>does </u><u>not </u><u>equal </u><u>the </u><u>sum </u><u>of </u><u>any </u><u>column </u>

<u>According </u><u>to </u><u>the </u><u>Second</u><u> </u><u>rule </u><u>:</u><u>-</u>


<u>According </u><u>to </u><u>the </u><u>first </u><u>rule </u><u>:</u><u>-</u><u> </u>


<u>From </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>got </u><u>:</u><u>-</u>



<u>Subsitute </u><u>(</u><u>3</u><u>)</u><u> </u><u>in </u><u>(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>


<u>We</u><u> </u><u>can </u><u>write </u><u>it </u><u>as </u><u>:</u><u>-</u>



<u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>c </u><u>and </u><u>e </u><u>in </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>


<u>Now</u><u>, </u>









Hence, The value of a, b, c, d and e is 23, 31 ,60 ,33 and 51 .
150%. since you already have 6, that's 100%. the extra 3 is half of the 6, meaning that it would be 50%
Ok, so from previous question
(x-h)^2=4p(y-k)
distance from focus to directix is 2
2/2=1=p
1>-1
focus is above the vertex
1 unit down from (0,1) is (0,0)
vertex at (0,0)
since focus is above, p is positive
(x-0)^2=4(1)(y-0)
x^2=4y
4y=x^2
divide both sides by 4
y=(1/4)x^2
f(x)=1/4x^2
2nd one is answer
Answer:
The answer is 2 and 1/4.
Step-by-step explanation:
You have to do 9 x 1/4 and then you get 2 & 1/4