Answer:
Explanation:
Both metal and wooden bowls are at the same temperature . But wood is non-conductor of heat whereas metal is conductor of heat .
If we touch the wooden bowl , heat flows from hot to cold object . Since the finger is at higher temperature , heat flows from finger to wooden bowl . But , since wood is non conducting , it does not allow heat to be conducted through it . Hence very less heat will be conducted from our finger .
On the other hand , if we touch a metal bowl , heat flows from finger to the metal bowl , without any hinderance . Hence rate of heat flow will be fast in case of metal bowl . As a result of it , we feel cool in touching metal bowl . This feeling will be absent in case of wooden bowl.
Answer:
a. Cellular Respiration produces more ATP than Anaerobic Respiration.
Explanation:
Cellular Respiration creates a total of 36-38 ATP per round. Anaerobic processes only produce 2 ATP per cycle.
Answer:
8.9L is the volume of the gas that must be dissolved.
Explanation:
For a weak base, we can find [(CH₃)₃N] using the equation:
Kb = [OH⁻] [[(CH₃)₃NH⁺] / [(CH₃)₃N]
As [OH⁻] = [[(CH₃)₃NH⁺] and [OH⁻] = 10^-pOH = 3.16x10⁻³M:
6.3x10⁻⁵ = [3.16x10⁻³M][3.16x10⁻³M] / [(CH₃)₃N]
[(CH₃)₃N] = 0.1587M
As the volume is 2.5L, moles are:
2.5L * (0.1587mol / L) = 0.3968moles
Using:
PV = nRT
We can solve for volume of the gas as follows:
P = 1atm at STP; n = 0.3968moles; R = 0.082atmL/molK; T = 273.15K at STP
V = 0.3968mol*0.082atmL/molK*273.15K/1atm
V = 8.9L is the volume of the gas that must be dissolved.
Answer:
neutral groups of atoms formed by covalent bonds.
You can split the process in two parts:
1) heating the liquid water from 10.1 °C to 25.0 °C , and
2) vaporization of liquid water at constant temperature of 25.0 °C.
For the first part, you use the formula ΔH = m*Cs*ΔT
ΔH = 30.1g * 4.18 j/(g°C)*(25.0°C - 10.1°C) = 1,874 J
For the second part, you use the formula ΔH = n*ΔHvap
Where n is the number of moles, which is calculated using the mass and the molar mass of the water:
n = mass / [molar mass] = 30.1 g / 18.0 g/mol = 1.67 mol
=> ΔH = 1.67 mol * 44,000 J / mol = 73,480 J
3) The enthalpy change of the process is the sum of both changes:
ΔH total = 1,874 J + 73,480 J = 75,354 J
Answer: 75,354 J