Answer:

Explanation:
We usually approximate the density of water to about
at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about
. For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at
, and the density at this point is exactly
.
<span>6.
Because the general formula for alkenes is CnH2n</span>
Answer:
A. Kilo , K, multiplication by 1000
B. Centi, c
C. Deci, d
D. Mili, m
E. Mega, M
F. Micro, u
<h3><u>Answer;</u></h3>
= 11,460 years
<h3><u>Explanation;</u></h3>
- <em><u>The half life of Carbon-14 is 5,730 years
. Half life is the time taken by a radioactive material to decay by half of its original mass. Therefore, it would take a time of 5730 years for a sample of 100 g of carbon-14 to decay to 50 grams</u></em>
<em>The initial amount of carbon-14 in this case was 1 whole; thus; </em>
<em>1 → 1/2 →1/4</em>
<em>To contain 1/4 of the value, 2 half-lives have passed.
</em>
<em>But, 1 half life = 5,730 years</em>
<em>Therefore; The artifact is is therefore: 2 x 5,730
</em>
<em> = 11,460 years </em>