Na2O + HCl→ NaCl +H2O
Does the equation above satisfy the law of mass conservation of matter.
No, since there are two sodium atoms as reactants, but only one sodium atom as a product.
<em><u>Explanation</u></em>
According to the law of mass conservation the number of atoms in the reactant side must be equal to the number of atoms in the product side.
For this reason the equation above does not satisfy the law of mass conservation since the number of sodium atoms are not equal in both side.
Explanation:
The chemical equation is as follows.

And, the given enthalpy is as follows.
;
= 102.5 kJ
Cl-Cl = 243 kJ/mol, O=O = 498 kJ/mol
Since, the bond enthalpy of Cl-Cl is not given so at first, we will calculate the value of Cl-Cl as follows.
102.5 = ![[(\frac{1}{2})x + 498] - [(2)(243)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%29x%20%2B%20498%5D%20-%20%5B%282%29%28243%29%5D)
102.5 = 
102.5 - 12 = 
x = 181 kJ
Now, total bond enthalpy of per mole of ClO is calculated as follows.

x = ![[(\frac{1}{2})181 + (\frac{1}{2})498] - 243](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%29181%20%2B%20%28%5Cfrac%7B1%7D%7B2%7D%29498%5D%20-%20243)
= 339.5 - 243
= 96.5 kJ
Thus, we can conclude that the value for the enthalpy of formation per mole of ClO(g) is 96.5 kJ.
Yes it is a chemical change because it is changing color which shows a chemical change, plus it changes into another element