Answer:
Horizontal distance = 0 m and 6 m
Step-by-step explanation:
Height of a rider in a roller coaster has been defined by the equation,
y = 
Here x = rider's horizontal distance from the start of the ride
i). 

![=\frac{1}{3}[x^{2}-2(3x)+9-9+24]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5Bx%5E%7B2%7D-2%283x%29%2B9-9%2B24%5D)
![=\frac{1}{3}[(x^{2}-2(3x)+9)+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x%5E%7B2%7D-2%283x%29%2B9%29%2B15%5D)
![=\frac{1}{3}[(x-3)^2+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x-3%29%5E2%2B15%5D)

ii). Since, the parabolic graph for the given equation opens upwards,
Vertex of the parabola will be the lowest point of the rider on the roller coaster.
From the equation,
Vertex → (3, 5)
Therefore, minimum height of the rider will be the y-coordinate of the vertex.
Minimum height of the rider = 5 m
iii). If h = 8 m,


(x - 3)² = 9
x = 3 ± 3
x = 0, 6 m
Therefore, at 8 m height of the roller coaster, horizontal distance of the rider will be x = 0 and 6 m
Answer:
2r + 3
Step-by-step explanation:
probably
Answer:
- g(x) = 2|x|
- g(x) = -2|x|
- g(x) = -2|x| -3
- g(x) = -2|x-1| -3
Step-by-step explanation:
1) Vertical stretch is accomplished by multiplying the function value by the stretch factor. When |x| is stretched by a factor of 2, the stretched function is ...
g(x) = 2|x|
__
2) Reflection over the x-axis means each y-value is replaced by its opposite. This is accomplished by multiplying the function value by -1.
g(x) = -2|x|
__
3) As you know from when you plot a point on a graph, shifting it down 3 units subtracts 3 from the y-value.
g(x) = -2|x| -3
__
4) A right-shift by k units means the argument of the function is replaced by x-k. We want a right shift of 1 unit, so ...
g(x) = -2|x -1| -3
Look for the y-intercept
since we know the slope is 3 we just going to plug in
-5=3(1)+y
-5-3=y
so the y-intercept is 8 now you can find the equation
y=3x-8