So, it's just an annoying problem. Keep the tax rates in mind for each thing.
$70 of souvenirs mean the tax is 5% since it is not prepared food, lodging, or auto rentals.
$580 on prepared food means that has 7% tax because it is special.
$620 on the car has a 10% tax, as stated in the problem.
So do 70(1.05)+580(1.07)+620(1.1) to get $1376.1.0
Part A)
His sample only involves days during the summer (if Devin is in the northern hemisphere), which would mean that the high temperatures he'll record are likely to be higher than the average. Therefore, the sample mean he computes does not represent the average high temperature for the whole year.
----------------------------------------
Part B)
To correct his mistake, he needs to sample every day of the year. Or he could sample a few days of each month (say the first ten days of each month). That way the entire year is better represented. The other seasons of spring, fall and winter are included now.
Answer:
227 ft^2
Step-by-step explanation:
Here, we are tasked with calculating the roaming area that Fido has
Calculating this is same as calculating the area of circle that has a radius which is equal to the length of the leash
Mathematically, the area would be
A = π * r^2
A = 3.14 * 8.5^2
A = 226.865 ft^2
To the nearest square foot, this is 227 ft^2
Hello,
Very nice as problem.
2 solutions:
1 quater,8 dimes, 2 pennies
and
3 quaters,3 dimes, 2 pennies
since
107=( 0, 0, 107) but : 100= 0*25+ 0*10+ 100
107=( 0, 1, 97) but : 100= 0*25+ 1*10+ 90
107=( 0, 2, 87) but : 100= 0*25+ 2*10+ 80
107=( 0, 3, 77) but : 100= 0*25+ 3*10+ 70
107=( 0, 4, 67) but : 100= 0*25+ 4*10+ 60
107=( 0, 5, 57) but : 100= 0*25+ 5*10+ 50
107=( 0, 6, 47) but : 100= 0*25+ 6*10+ 40
107=( 0, 7, 37) but : 100= 0*25+ 7*10+ 30
107=( 0, 8, 27) but : 100= 0*25+ 8*10+ 20
107=( 0, 9, 17) but : 100= 0*25+ 9*10+ 10
107=( 0, 10, 7) but : 100= 0*25+ 10*10+ 0
107=( 1, 0, 82) but : 100= 1*25+ 0*10+ 75
107=( 1, 1, 72) but : 100= 1*25+ 1*10+ 65
107=( 1, 2, 62) but : 100= 1*25+ 2*10+ 55
107=( 1, 3, 52) but : 100= 1*25+ 3*10+ 45
107=( 1, 4, 42) but : 100= 1*25+ 4*10+ 35
107=( 1, 5, 32) but : 100= 1*25+ 5*10+ 25
107=( 1, 6, 22) but : 100= 1*25+ 6*10+ 15
107=( 1, 7, 12) but : 100= 1*25+ 7*10+ 5
107=( 1, 8, 2) is good
107=( 2, 0, 57) but : 100= 2*25+ 0*10+ 50
107=( 2, 1, 47) but : 100= 2*25+ 1*10+ 40
107=( 2, 2, 37) but : 100= 2*25+ 2*10+ 30
107=( 2, 3, 27) but : 100= 2*25+ 3*10+ 20
107=( 2, 4, 17) but : 100= 2*25+ 4*10+ 10
107=( 2, 5, 7) but : 100= 2*25+ 5*10+ 0
107=( 3, 0, 32) but : 100= 3*25+ 0*10+ 25
107=( 3, 1, 22) but : 100= 3*25+ 1*10+ 15
107=( 3, 2, 12) but : 100= 3*25+ 2*10+ 5
107=( 3, 3, 2) is good
107=( 4, 0, 7) but : 100= 4*25+ 0*10+ 0
The most accurate statement about progress monitoring is progress monitoring is a useful way to ensure children are participating in targeted, purposeful, and meaningful math instruction and allows for the teacher to identify the skills children may need additional support in. Option A
<h3>What is progress monitoring?</h3>
Progress monitoring can be defined as a standard process of evaluating or checking progress toward a performance target on the basis of level of improvement from frequent assessment of a skill.
Thus, the most accurate statement about progress monitoring is progress monitoring is a useful way to ensure children are participating in targeted, purposeful, and meaningful math instruction and allows for the teacher to identify the skills children may need additional support in. Option A
Learn more about progress monitoring here:
brainly.com/question/2763918
#SPJ1