<u>Answer-</u>
<em>After 76 swings</em><em> the angle through which it swings less than 1°</em>
<u>Solution-</u>
From the question,
Angle of the first of swing = 30° and then each succeeding oscillation is through 95% of the angle of the one before it.
So the angle of the second swing = ![(30\times \frac{95}{100})^{\circ}](https://tex.z-dn.net/?f=%2830%5Ctimes%20%5Cfrac%7B95%7D%7B100%7D%29%5E%7B%5Ccirc%7D)
Then the angle of third swing = ![(30\times (\frac{95}{100})^2)^{\circ}](https://tex.z-dn.net/?f=%2830%5Ctimes%20%28%5Cfrac%7B95%7D%7B100%7D%29%5E2%29%5E%7B%5Ccirc%7D)
So, this follows a Geometric Progression.
![(30,\ 30\cdot \frac{95}{100},\ 30\cdot (\frac{95}{100})^2............,0)](https://tex.z-dn.net/?f=%2830%2C%5C%2030%5Ccdot%20%5Cfrac%7B95%7D%7B100%7D%2C%5C%2030%5Ccdot%20%28%5Cfrac%7B95%7D%7B100%7D%29%5E2............%2C0%29)
a = The initial term = 30
r = Common ratio = ![\frac{95}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B95%7D%7B100%7D)
As we have to find the number swings when the angle swept by the pendulum is less than 1°.
So we have the nth number is the series as 1, applying the formula
![T_n=ar^{n-1}](https://tex.z-dn.net/?f=T_n%3Dar%5E%7Bn-1%7D)
Putting the values,
![\Rightarrow 1=30(\frac{95}{100})^{n-1}](https://tex.z-dn.net/?f=%5CRightarrow%201%3D30%28%5Cfrac%7B95%7D%7B100%7D%29%5E%7Bn-1%7D)
![\Rightarrow \frac{1}{30} =(\frac{95}{100})^{n-1}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cfrac%7B1%7D%7B30%7D%20%3D%28%5Cfrac%7B95%7D%7B100%7D%29%5E%7Bn-1%7D)
Taking logarithm of both sides,
![\Rightarrow \log \frac{1}{30} =\log (\frac{95}{100})^{n-1}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Clog%20%5Cfrac%7B1%7D%7B30%7D%20%3D%5Clog%20%28%5Cfrac%7B95%7D%7B100%7D%29%5E%7Bn-1%7D)
![\Rightarrow \log \frac{1}{30} =(n-1)\log (\frac{95}{100})](https://tex.z-dn.net/?f=%5CRightarrow%20%5Clog%20%5Cfrac%7B1%7D%7B30%7D%20%3D%28n-1%29%5Clog%20%28%5Cfrac%7B95%7D%7B100%7D%29)
![\Rightarrow -1.5=(n-1)(-0.02)](https://tex.z-dn.net/?f=%5CRightarrow%20-1.5%3D%28n-1%29%28-0.02%29)
![\Rightarrow 1.5=(n-1)(0.02)](https://tex.z-dn.net/?f=%5CRightarrow%201.5%3D%28n-1%29%280.02%29)
![\Rightarrow n-1=\dfrac{1.5}{0.02}](https://tex.z-dn.net/?f=%5CRightarrow%20n-1%3D%5Cdfrac%7B1.5%7D%7B0.02%7D)
![\Rightarrow n-1=75](https://tex.z-dn.net/?f=%5CRightarrow%20n-1%3D75)
![\Rightarrow n=76](https://tex.z-dn.net/?f=%5CRightarrow%20n%3D76)
Therefore, after 76 swings the angle through which it swings less than 1°