Answer:
No
Step-by-step explanation:
For shapes to be similar, their ratios of length-to-length and width-to-width must be the same. When you divide the larger length by the smaller length and the larger width by the smaller width, do you get the same number? No, so these rectangles are not similar.
Taylor placed 8 photos on the last page of her scrapbook.
Answer:
g/-5= 1
Step-by-step explanation:
g=-5, so -5/-5 is 1.
Answer:
![\large\boxed{1.\ f^{-1}(x)=4\log(x\sqrt[4]2)}\\\\\boxed{2.\ f^{-1}(x)=\log(x^5+5)}\\\\\boxed{3.\ f^{-1}(x)=\sqrt{4^{x-1}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D4%5Clog%28x%5Csqrt%5B4%5D2%29%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Clog%28x%5E5%2B5%29%7D%5C%5C%5C%5C%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%7B4%5E%7Bx-1%7D%7D%7D)
Step-by-step explanation:


![\log_55^{\frac{1}{4}y}=\log_5\left(2^\frac{1}{4}x\right)\qquad\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\\dfrac{1}{4}y=\log(x\sqrt[4]2)\qquad\text{multiply both sides by 4}\\\\y=4\log(x\sqrt[4]2)](https://tex.z-dn.net/?f=%5Clog_55%5E%7B%5Cfrac%7B1%7D%7B4%7Dy%7D%3D%5Clog_5%5Cleft%282%5E%5Cfrac%7B1%7D%7B4%7Dx%5Cright%29%5Cqquad%5Ctext%7Buse%7D%5C%20a%5E%5Cfrac%7B1%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5C%5Cdfrac%7B1%7D%7B4%7Dy%3D%5Clog%28x%5Csqrt%5B4%5D2%29%5Cqquad%5Ctext%7Bmultiply%20both%20sides%20by%204%7D%5C%5C%5C%5Cy%3D4%5Clog%28x%5Csqrt%5B4%5D2%29)
![--------------------------\\2.\\y=(10^x-5)^\frac{1}{5}\\\\\text{Exchange x and y. Solve for y:}\\\\(10^y-5)^\frac{1}{5}=x\qquad\text{5 power of both sides}\\\\\bigg[(10^y-5)^\frac{1}{5}\bigg]^5=x^5\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(10^y-5)^{\frac{1}{5}\cdot5}=x^5\\\\10^y-5=x^5\qquad\text{add 5 to both sides}\\\\10^y=x^5+5\qquad\log\ \text{of both sides}\\\\\log10^y=\log(x^5+5)\Rightarrow y=\log(x^5+5)](https://tex.z-dn.net/?f=--------------------------%5C%5C2.%5C%5Cy%3D%2810%5Ex-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%3Dx%5Cqquad%5Ctext%7B5%20power%20of%20both%20sides%7D%5C%5C%5C%5C%5Cbigg%5B%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5Cbigg%5D%5E5%3Dx%5E5%5Cqquad%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%5Ccdot5%7D%3Dx%5E5%5C%5C%5C%5C10%5Ey-5%3Dx%5E5%5Cqquad%5Ctext%7Badd%205%20to%20both%20sides%7D%5C%5C%5C%5C10%5Ey%3Dx%5E5%2B5%5Cqquad%5Clog%5C%20%5Ctext%7Bof%20both%20sides%7D%5C%5C%5C%5C%5Clog10%5Ey%3D%5Clog%28x%5E5%2B5%29%5CRightarrow%20y%3D%5Clog%28x%5E5%2B5%29)

Answer:
See below ~
Step-by-step explanation:
<u>Sin A</u> : opposing side of ∠A / hypotenuse
<u>Sin C</u> : opposing side of ∠C / hypotenuse
<u></u>
<u>Cos A</u> : adjacent side of ∠A / hypotenuse
<u></u>
<u>Cos C</u> : adjacent side of ∠C / hypotenuse