1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
4 years ago
7

How will gravitational wave discovery help the scientists in their quest to fully understand gravity?

Physics
1 answer:
irina [24]4 years ago
8 0
<span>The heavier the body is, the stronger its gravitational pull. Just like earth, we feel gravitational pull because we are attracted to earth and so is the moon. Also, the sun is heavier than the earth and therefore, we are attracted to the sun because of its gravitational pull. When the earth revolves around the sun, both of them releases gravitational waves. Gravitational waves are ripples of waves travelling outward from the source. The more massive the orbit of two bodies, the more it emits gravitational wave. And everything around it that is near within the wave experiences a ‘pull’ toward the orbiting bodies. The advantages we get when we can measure gravitational waves are; one, we can measure the activity between two bodies in orbit in the universe, two, scientist can estimate the merging of two bodies in the universe every 15 minutes by using LIGO and three, we can know the behavior of other bodies that we did not know exist.</span>
You might be interested in
If B is added to C, the result is a vector in the direction of the positive y-axis with a magnitude equal to that of If C = zi +
fredd [130]

Answer:c

Explanation:

4 0
3 years ago
An electron is released from rest at a distance of 6.00 cm from a proton. If the proton is held in place, how fast will the elec
lana66690 [7]

Answer:

91.87 m/s

Explanation:

<u>Given:</u>

  • x = initial distance of the electron from the proton = 6 cm = 0.06 m
  • y = initial distance of the electron from the proton = 3 cm = 0.03 m
  • u = initial velocity of the electron = 0 m/s

<u>Assume:</u>

  • m = mass of an electron = 9.1\times 10^{-31}\ kg
  • v = final velocity of the electron
  • e = magnitude of charge on an electron = 1.6\times 10^{-19}\ C
  • p = magnitude of charge on a proton = 1.6\times 10^{-19}\ C

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.

Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.

\therefore \textrm{Kinetic energy change}= \textrm{Change in potential energy}\\\Rightarrow \dfrac{1}{2}m(v^2-u^2)= \dfrac{kpe}{y}-\dfrac{kpe}{x}\\\Rightarrow \dfrac{1}{2}m(v^2-(0)^2)= \dfrac{kpe}{0.03}-\dfrac{kpe}{0.06}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{3}-\dfrac{100kpe}{6}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{6}\\

\Rightarrow v^2= \dfrac{100kpe\times 2}{6m}\\\Rightarrow v^2= \dfrac{100kpe}{3m}\\\Rightarrow v^2= \dfrac{100\times 9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{3\times 9.1\times 10^{-31}}\\\Rightarrow v^2=8.44\times 10^3\\\Rightarrow v=91.87\ m/s\\

Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.

8 0
4 years ago
An 85 kg man and his 35 kg daughter are sitting on opposite ends of a 3.00 m see-saw. The see-saw is anchored in the center. If
wolverine [178]

Answer:

0.54m

Explanation:

Step one:

given data

length of seesaw= 3m

mass of man m1= 85kg

weight = mg

W1= 85*10= 850N

mass of daughter m2= 35kg

W2= 35*10= 350N

distance from the center= (1.5-0.2)= 1.3m

Step two:

we know that the sum of clockwise moment equals the anticlockwise moment

let the distance the must sit to balance the system be x

taking moment about the center of the system

350*1.3=850*x

455=850x

divide both sides by  850

x=455/850

x=0.54

Hence the man must sit 0.54m from the right to balance the system

3 0
3 years ago
At the beginning of a unit on forces, Ms. Alton is leading a class discussion asking her students
VMariaS [17]

Answer:

(iv), (v), (vi) would be incorrect.

Explanation:

(iv) Force isn't transferred from one colliding object to another, but momentum can be.

(v) An object doesn't stop immediately a force stops acting on it. Think of a thrown ball.

(vi) For an object not to move, it means that the net force on the object is zero, and not necessarily that there are no forces acting on the object. For example, an object could be pushed on one side, and be pushed on the other side with an equal force in the opposite direction. The forces would cancel each other and the net force would be zero.

The rest should be correct.

6 0
3 years ago
A fisherman notices that his boat is moving up and down periodically, owing to waves on the surface of the water. It takes 2.5 s
gulaghasi [49]

(a) 0.96 m/s

The period of the wave corresponds to the time taken for one complete oscillation of the boat, from the highest point to the highest point again. Since the time between the highest point and the lowest point is 2.5 s, the period is twice this time:

T=2\cdot 2.5 s=5.0 s

The frequency of the waves is the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{5.0 s}=0.20 Hz

The wavelength instead is just the distance between two consecutive crests, so

\lambda=4.8 m

And the wave speed is given by:

v=\lambda f=(4.8 m)(0.20 Hz)=0.96 m/s

(b) 0.265 m

The total distance between the highest point of the wave and its lowest point is

d = 0.53 m

The amplitude is just the maximum displacement of the wave from the equilibrium position, so it is equal to half of this distance. So, the amplitude is

A=\frac{d}{2}=\frac{0.53 m}{2}=0.265 m

(c) Amplitude: 0.15 m, wave speed: same as before

In this case, the amplitude of the wave would be lower. In fact,

d = 0.30 m

So the amplitude would be

A=\frac{d}{2}=\frac{0.30 m}{2}=0.15 m

Instead, the wave speed would not change, since neither the frequency nor the wavelength of the wave have changed.

8 0
3 years ago
Other questions:
  • A 1,000 kg ball traveling at 5 m/s would have
    14·2 answers
  • What is the effect of pressure on the volume of a gas?
    6·2 answers
  • A student is sitting in a moving car. Through the car's window, the student sees a traffic
    9·1 answer
  • If any problem involving circular motion, which way does the acceleration vector point ?
    10·1 answer
  • When entering a bicycle lane to make a right turn, within how many feet must you enter the lane before making the turn?
    8·1 answer
  • A circular coil that has N = 180 N=180 turns and a radius of r = 13.0 cm r=13.0 cm lies in a magnetic field that has a magnitude
    12·1 answer
  • Two horizontal forces act on a 1.4 kg chopping block that can slide over a friction-less kitchen counter, which lies in an xy pl
    13·1 answer
  • Which of the following is the most appropriate definition of organic compound?
    9·2 answers
  • Một vật chuyển động tròn đều có chu kì T = 0,25 s. Tính tần số chuyển động f của vật?
    9·1 answer
  • What else is produced when sodium carbonate decomposes
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!