1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
6

-3,0,3,6,9 arithmetic sequence

Mathematics
1 answer:
astraxan [27]3 years ago
4 0

Answer:

Adding 3

Step-by-step explanation:

-3 + 3 = 0

0 + 3 = 3

3 +3 = 6

6 + 3 = 9

You might be interested in
Are the data shown in this line plot skewed left, skewed right, or not skewed? skewed right not skewed skewed left Line plot ove
Nimfa-mama [501]
The Answer is Shewed Left
7 0
3 years ago
Read 2 more answers
Would anybody give the right answer
BARSIC [14]

Answer:

i think so

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Mary bought 4 small cookies for 40 cents each and 2 large cookies for 90 cents each how much did she spend all together
babunello [35]

Answer:

$3.40

Step-by-step explanation:

4x.40 is 1.60

2x.90 is 1.80

Then you take 1.80+1.60 to get $3.40 Hope this helps!

4 0
3 years ago
Round 26 to its greatest place value
Crank
26 27 28 29 30 so 25 24 23 22 21---so 30 is the awnser
6 0
3 years ago
Read 2 more answers
Use the given information to find (a) sin(s+t), (b) tan(s+t), and (c) the quadrant of s+t. cos s = - 12/13 and sin t = 4/5, s an
Anton [14]

Answer:

Part a) sin(s + t) =-\frac{63}{65}    

Part b) tan(s + t) = -\frac{63}{16}

Part c) (s+t) lie on Quadrant IV

Step-by-step explanation:

[Part a) Find sin(s+t)

we know that

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

step 1

Find sin(s)

sin^{2}(s)+cos^{2}(s)=1

we have

cos(s)=-\frac{12}{13}

substitute

sin^{2}(s)+(-\frac{12}{13})^{2}=1

sin^{2}(s)+(\frac{144}{169})=1

sin^{2}(s)=1-(\frac{144}{169})

sin^{2}(s)=(\frac{25}{169})

sin(s)=\frac{5}{13} ---> is positive because s lie on II Quadrant

step 2

Find cos(t)

sin^{2}(t)+cos^{2}(t)=1

we have

sin(t)=\frac{4}{5}

substitute

(\frac{4}{5})^{2}+cos^{2}(t)=1

(\frac{16}{25})+cos^{2}(t)=1

cos^{2}(t)=1-(\frac{16}{25})

cos^{2}(t)=\frac{9}{25}

cos(t)=-\frac{3}{5} is negative because t lie on II Quadrant

step 3

Find sin(s+t)

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute the values

sin(s + t) = (\frac{5}{13})(-\frac{3}{5}) + (\frac{4}{5})(-\frac{12}{13})

sin(s + t) = -(\frac{15}{65}) -(\frac{48}{65})

sin(s + t) =-\frac{63}{65}

Part b) Find tan(s+t)

we know that

tex]tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))[/tex]

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

step 1

Find tan(s)

tan(s)=sin(s)/cos(s)

substitute

tan(s)=(\frac{5}{13})/(-\frac{12}{13})=-\frac{5}{12}

step 2

Find tan(t)

tan(t)=sin(t)/cos(t)

substitute

tan(t)=(\frac{4}{5})/(-\frac{3}{5})=-\frac{4}{3}

step 3

Find tan(s+t)

tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))

substitute the values

tan(s + t) = (-\frac{5}{12} -\frac{4}{3})/(1 - (-\frac{5}{12})(-\frac{4}{3}))

tan(s + t) = (-\frac{21}{12})/(1 - \frac{20}{36})

tan(s + t) = (-\frac{21}{12})/(\frac{16}{36})

tan(s + t) = -\frac{63}{16}

Part c) Quadrant of s+t

we know that

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

Find the value of cos(s+t)

cos(s+t) = cos(s) cos(t) -sin (s) sin(t)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute

cos(s+t) = (-\frac{12}{13})(-\frac{3}{5})-(\frac{5}{13})(\frac{4}{5})

cos(s+t) = (\frac{36}{65})-(\frac{20}{65})

cos(s+t) =\frac{16}{65}

we have that

cos(s+t)=positive -----> (s+t) could be in I or IV quadrant

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

therefore

(s+t) lie on Quadrant IV

4 0
3 years ago
Other questions:
  • A local gym charges nonmembers $10 per hour to use the tennis courts.
    11·1 answer
  • WILL GIVE BRAINLIEST<br> Solve for y in terms of w, x, and z.<br> x=zyw<br> y=
    10·1 answer
  • What does x equal to in 5x=3
    15·2 answers
  • Please help me find the area of shaded region and step by step​
    13·1 answer
  • What is the missing reason for the 3rd step in the proof below?
    7·1 answer
  • What does 15/5 equal
    8·2 answers
  • HELP MEEEEEE PLEASEEEEEEEEEEEEEEE
    12·2 answers
  • How can unit analysis help you solve a conversion problem?
    5·1 answer
  • Simplify (6.7w+2)+(4.3-8.2)
    10·1 answer
  • Solve for the missing side round to the nearest 10th (look at image)
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!