C, since replacing the X and Y of both points with the ones from the equation make correct statements
Answer: The correct line is

Step-by-step explanation: We are given the following two sets of quadratic expressions in various forms:

We are to select one of the lines from above that represent three equivalent expressions.
We can see that there are three different forms of a quadratic expression in each of the lines:
First one is the simplified form, second is the factorised form and third one is the vertex form.
So, to check which line is correct, we need to calculate the factorised form and the vertex form from the simplified form.
We have

and

So,

Thus, Line 1 contains three equivalent expressions.
Now,

and

So,

Thus, Line 2 does not contain three equivalent expressions.
Hence, Line 1 is correct.
Answer:
you have to find the smallest common denominator
Step-by-step explanation:
so once the fractions have the same denominator you can add them easily and simplify
Answer:
There is a 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
Step-by-step explanation:
For each question, there are only two possible outcomes. Either it is correct, or it is not. This means that we use the binomial probability distribution to solve this problem.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
In which is the number of different combinatios of x objects from a set of n elements, given by the following formula.
And p is the probability of X happening.
In this problem we have that:
There are four questions, so n = 4.
Each question has 5 options, one of which is correct. So
What is the probability that he answers exactly 1 question correctly in the last 4 questions?
This is
There is a 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
My guess...
⊕⊕⊕
Assuming these are 4^(1/7), 4^(7/2), 7^(1/4) and 7^(1/2), the conversion process is pretty quick. the denominator, or bottom, of your fraction exponent becomes the "index" of your radical -- in ∛, "3" is your index, just for reference. the numerator, aka the top of the fraction exponent, becomes a power inside the radical.
4^(1/7) would become ⁷√4 .... the bottom of the fraction becomes the small number included in the radical and the 4 goes beneath the radical
in cases such as this one, where 1 is on top of the fraction radical, that number does technically go with the 4 beneath the radical--however, 4¹ = 4 itself, so there is no need to write the implied exponent.
4^(7/2) would become √(4⁷) ... the 7th power goes with the number under your radical and the "2" becomes a square root
7^(1/4) would become ⁴√7 ... like the first answer, the bottom of the fraction exponent becomes the index of the radical and 7 goes beneath the radical. again, the 1 exponent goes with the 7 beneath the radical, but 7¹ = 7
7^(1/2) would become, simply, √7