Answer:
y=-2x+5
Step-by-step explanation:
Trust me please
Answer:
270
Step-by-step explanation:
Just multiply.
5*6*9=270
Answer:
f(-3) = -12
g(-2) = -19
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 3x - 3
g(x) = 3x³ + 5
f(-3) is <em>x</em> = -3 for function f(x)
g(-2) is <em>x</em> = -2 for function g(x)
<u>Step 2: Evaluate</u>
f(-3)
- Substitute in <em>x</em> [Function f(x)]: f(-3) = 3(-3) - 3
- Multiply: f(-3) = -9 - 3
- Subtract: f(-3) = -12
g(-2)
- Substitute in <em>x</em> [Function g(x)]: g(-2) = 3(-2)³ + 5
- Exponents: g(-2) = 3(-8) + 5
- Multiply: g(-2) = -24 + 5
- Add: g(-2) = -19
Answer:
∛27 = 3
Step-by-step explanation:
A radical is simply a fractional exponent: ![a^{(\frac{m}{n})} = \sqrt[n]{a^{m} }](https://tex.z-dn.net/?f=a%5E%7B%28%5Cfrac%7Bm%7D%7Bn%7D%29%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D)
Hence, ∛27 = 
Since 27 = 3³, then:
You could rewrite ∛27 as ∛(3)³.
![\sqrt[3]{3^{(3)} } = 3^{[(3)*(\frac{1}{3})]}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%5E%7B%283%29%7D%20%7D%20%3D%203%5E%7B%5B%283%29%2A%28%5Cfrac%7B1%7D%7B3%7D%29%5D%7D)
Multiplying the fractional exponents (3 × 1/3) will result in 1 (because 3 is the <u><em>multiplicative inverse</em></u> of 1/3). The multiplicative inverse of a number is defined as a number which when multiplied by the original number gives the product as 1.
Therefore, ∛27 = 3.