The magnitude of the current in wire 3 is 2.4 A and in a direction pointing in the downward direction.
- The force per unit length between two parallel thin current-carrying
and
wires at distance ' r ' is given by
....(1) .
- If the current is flowing in both wires in the same direction, and the force between them will be the attractive force and if the current is flowing in opposite direction in wires then the force between them will be the repulsive force.
A schematic of the information provided in the question can be seen in the image attached below.
From the image, force on wire 2 due to wire 1 = force on wire 2 due to wire 3

Using equation (1) , we get

I₃ = 2.4 A and the current is pointing in the downward direction
Learn more about the magnitude and direction of forces here:
brainly.com/question/14879801?referrer=searchResults
#SPJ4
Formula for potential energy is V=mgh, where m is mass in KG, g is earth acceleration (10 m/s^2), and h its height in meters. We know mass, acceleration is constant and also known, we know height also. Lets substitute
V=75*10*300=225000[J]=225[kJ] - its the answer
Answer:
The position of the spring in terms of g, m & k is 
Explanation:
Stiffness of the spring = k
Mass = m
When a mass m is attached with the spring then spring stretched. in that case the force exerted on the spring is equal to weight of the mass attached.
⇒ Force exerted on the spring F = k x
⇒ m g = k x
⇒ 
This is the position of the spring in terms of g, m & k.
The kinetic energy of a book on a shelf is equal to the work done to lift the book to the shelf is false. The kinetic energy on the shelf is zero because it is not in action.
Answer:14 m/s
Explanation:
Kinetic energy(ke)=175J
Momentum(M)=25kgm/s
Speed=v
Mass=m
Ke=(m x v x v)/2
175=(mv^2)/2
Cross multiply
175 x 2=mv^2
350=mv^2
Momentum=mass x velocity
25=mv
m=25/v
Substitute m=25/v in 350=mv^2
350=25/v x v^2
350=25v^2/v
v^2/v=v
350=25v
v=350/25
v=14 m/s