Answer:
10
Step-by-step explanation:
4m=40
m=10
Answer:
100 Joules
Step-by-step explanation:
We use the definition of Work as the force applied multiplied by the distance the object was moved. In our case the force exerted is 50 N, over a distance of 2 meters, therefore:
Work = F * d = 50 N * 2 m = 100 N*m = 100 Joules
The SI unit for Newton times meter is called "Joule".
Hey bro use an app called photo math it tells you ghe answer and teaches you how to do it
Answer:
What is the graph of h(x)=f(x)+g(x) with an example?
So many possible combinations of types of equations for f(x) and g(x).
If they are both linear. f(x) = 3x + 2. g(x) = 2x - 5. h(x) = f(x) + g(x) = 5x - 3. This is also linear.
f(x) has slope = 3 and y-intercept = 2. g(x) has slope = 2 and y intercept = -5. h(x) has slope = 5 and y-intercept = -3.
The graph of the sum of two linear equations is a straight line with slope equal to the sum of the slopes of the two linear equations and a y-intercept equal to the sum of the y-intercepts of the two linear equations.
If one is linear and the other is quadratic. f(x) = 2x + 3. g(x) = x^2 + 6x - 4. h(x) = f(x) + g(x) = x^2 + 8x - 1. This is quadratic.
f(x) has slope = 3 and y-intercept = 3. g(x) has an axis of symmetry of x = -3, vertex at (-3, -13), y-intercept = -4, x-intercepts = -3 + 13^½ and -3 - 13^½ . h(x) has an axis of symmetry of x = -4, vertex at (-4, -17), y-intercept = -1, x-intercepts = -4 + 17^½ and -4 - 17^½ .
The graph of the sum of a linear equation [y = mx + b] and a quadratic equation [y = Ax^2 + Bx + C] has an axis of symmetry of x = - (B + m) / 2A, vertex at ( - (B + m) / 2A, - (B + m)^2 / 4A + (b + C)), y-intercept = b + C, x-intercepts = (- (B + m) + ( (B + m)^2 - 4A (b + C))^½ ) / 2A and (- (B + m) - ( (B + m)^2 - 4A (b + C))^½ ) / 2A .