2b 2a
----------------- + -----------------
(b+a)^2 (b^2 - a^2)
2b 2a
= ----------------- + -------------------
(b+a)(b+a) (b+a)(b-a)
2b(b - a) + 2a(b + a)
= ------------------------------------
(b+a)(b+a)(b-a)
2b^2 - 2ab + 2ab + 2a^2
= ---------------------------------------
(b+a)(b+a)(b-a)
2b^2 + 2a^2
= ------------------------
(b+a)(b+a)(b-a)
2(b^2 + a^2)
= ------------------------
(b+a)^2 (b-a)
Answer:
Numerator: 2(b^2 + a^2)
Denominator: (b+a)^2 (b-a)
Answer:
21.74 But if it tells you to round I would round to 21 lbs
Step-by-step explanation:
its basically just a ratio of 92 to 20
92/20=4.6
92-20=72% the amount that is lost
so given that the plum is 100 lbs we know that 72% is depleted
(72/92 = .78)X100= 78 lbs depleted
Lastly 100-78 =22 for the remaining weight of the prunes.
Solve for m:3 m + 7/2 = 5/2 - 2 m
Put each term in 3 m + 7/2 over the common denominator 2: 3 m + 7/2 = (6 m)/2 + 7/2:(6 m)/2 + 7/2 = 5/2 - 2 m
(6 m)/2 + 7/2 = (6 m + 7)/2:(6 m + 7)/2 = 5/2 - 2 m
Put each term in 5/2 - 2 m over the common denominator 2: 5/2 - 2 m = 5/2 - (4 m)/2:(6 m + 7)/2 = 5/2 - (4 m)/2
5/2 - (4 m)/2 = (5 - 4 m)/2:(6 m + 7)/2 = (5 - 4 m)/2
Multiply both sides by 2:6 m + 7 = 5 - 4 m
Add 4 m to both sides:6 m + 4 m + 7 = (4 m - 4 m) + 5
4 m - 4 m = 0:6 m + 4 m + 7 = 5
6 m + 4 m = 10 m:10 m + 7 = 5
Subtract 7 from both sides:10 m + (7 - 7) = 5 - 7
7 - 7 = 0:10 m = 5 - 7
5 - 7 = -2:10 m = -2
Divide both sides of 10 m = -2 by 10:(10 m)/10 = (-2)/10
10/10 = 1:m = (-2)/10
The gcd of -2 and 10 is 2, so (-2)/10 = (2 (-1))/(2×5) = 2/2×(-1)/5 = (-1)/5:Answer: m = (-1)/5
Answer:
The required proof is shown below.
Step-by-step explanation:
Consider the provided figure.
It is given that KM=LN
We need to prove KL=MN
Now consider the provided statement.
KM = LN Given
KM = KL+LM Segment addition postulate
LN = LM+MN Segment addition postulate
KL+LM = LM+MN Substitution property of equality
KL = MN Subtraction property of equality
The required proof is shown above.