Answer:
a
Step-by-step explanation:
.....................
547.9 is the answer to this
95% of red lights last between 2.5 and 3.5 minutes.
<u>Step-by-step explanation:</u>
In this case,
- The mean M is 3 and
- The standard deviation SD is given as 0.25
Assume the bell shaped graph of normal distribution,
The center of the graph is mean which is 3 minutes.
We move one space to the right side of mean ⇒ M + SD
⇒ 3+0.25 = 3.25 minutes.
Again we move one more space to the right of mean ⇒ M + 2SD
⇒ 3 + (0.25×2) = 3.5 minutes.
Similarly,
Move one space to the left side of mean ⇒ M - SD
⇒ 3-0.25 = 2.75 minutes.
Again we move one more space to the left of mean ⇒ M - 2SD
⇒ 3 - (0.25×2) =2.5 minutes.
The questions asks to approximately what percent of red lights last between 2.5 and 3.5 minutes.
Notice 2.5 and 3.5 fall within 2 standard deviations, and that 95% of the data is within 2 standard deviations. (Refer to bell-shaped graph)
Therefore, the percent of red lights that last between 2.5 and 3.5 minutes is 95%
I’m pretty sure the answer is C
Answer: The length of the line B'C" is 1 unit.
Step-by-step explanation:
Given: Triangle ABC is dilated by a scale factor of 0.5 with the origin as the center of dilation , resulting in the image Triangle A'B'C'.
If A (2,2), B= (4,3) and C=(6,3).
Distance between (a,b) and (c,d): 
Then, BC 

Length of image = scale factor x length in original figure
B'C' = 0.5 × BC
= 0.5 × 2
= 1 unit
Hence, the length of the line B'C" is 1 unit.